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Before Starting

A few years ago, I shared the “Sword for Offer” problem solutions on LeetCode, receiving encourage-
ment and support from many readers. During interactions with readers, the most frequently asked
question I encountered was “how to get started with algorithms.” Gradually, I developed a keen inter-
est in this question.

Diving straight into problem-solving seems to be the most popular approach—it's simple, direct, and
effective. However, problem-solving is like playing Minesweeper: those with strong self-learning abil-
ities can successfully defuse the mines one by one, while those with insufficient foundations may end
up bruised and battered, retreating step by step in frustration. Reading through textbooks is also a
common practice, but for job seekers, graduation theses, resume submissions, and preparations for
written tests and interviews have already consumed most of their energy, making working through
thick books an arduous challenge.

If you're facing similar struggles, then it's fortunate that this book has “found” you. This book is my
answer to this question—even if it may not be the optimal solution, it is at least a positive attempt.
While this book alone won't directly land you a job offer, it will guide you to explore the “knowledge
map” of data structures and algorithms, help you understand the shapes, sizes, and distributions of
different “mines,” and enable you tomaster various “mine-clearingmethods.” With these skills, I believe
you can tackle problems and read technical literature more confidently, gradually building a complete
knowledge system.

I deeply agree with Professor Feynman's words: “Knowledge isn't free. You have to pay attention.” In
this sense, this book is not entirely “free.” In order to live up to the precious “attention” you invest in
this book, I will do my utmost and devote my greatest “attention” to completing this work.

I'm acutely aware of my limited knowledge and shallow expertise. Although the content of this book
has been refined over a period of time, there are certainly still many errors, and I sincerely welcome
critiques and corrections from teachers and fellow students.

The code in this book is hosted in the github.com/krahets/hello-algo repository.
For a better reading experience, please visit www.hello-algo.com.

Endorsements

“An easy-to-understand book on data structures and algorithms, which guides readers to learn
by minds-on and hands-on. Strongly recommended for algorithm beginners!”
——Junhui Deng, Professor, Department of CS, Tsinghua University

“If I had 'Hello Algo' when I was learning data structures and algorithms, it would have been 10
times easier!”
——Mu Li, Senior Principal Scientist, Amazon

https://github.com/krahets/hello-algo
https://www.hello-algo.com/


The advent of computers has brought tremendous changes to the world. With their high-speed com-
puting capabilities and excellent programmability, they have become the ideal medium for executing
algorithms and processing data. Whether it's the realistic graphics in video games, the intelligent
decision-making in autonomous driving, AlphaGo's brilliant Go matches, or ChatGPT's natural inter-
actions, these applications are all exquisite interpretations of algorithms on computers.

In fact, before the advent of computers, algorithms and data structures already existed in every cor-
ner of the world. Early algorithms were relatively simple, such as ancient counting methods and tool-
making procedures. As civilization progressed, algorithms gradually becamemore refined and complex.
From the ingenious craftsmanship of master artisans, to industrial products that liberate productive
forces, to the scientific laws governing the operation of the universe, behind almost every ordinary or
astonishing thing lies ingenious algorithmic thinking.

Similarly, data structures are everywhere: from large-scale social networks to small subway systems,
many systems can be modeled as “graphs”; from a nation to a family, the primary organizational forms
of society exhibit characteristics of “trees”; winter clothing is like a “stack,” where the first item put
on is the last to be taken off; a badminton tube is like a “queue,” with items inserted at one end and
retrieved from the other; a dictionary is like a “hash table,” enabling quick lookup of target entries.

This book aims to help readers understand the core concepts of algorithms and data structures
through clear and accessible animated illustrations and runnable code examples, and to implement
them through programming. Building on this foundation, the book endeavors to reveal the vivid
manifestations of algorithms in the complex world and showcase the beauty of algorithms. I hope this
book can be of help to you!
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Chapter 0. Preface

Abstract
Algorithms are like a beautiful symphony, each line of code flows like a melody.
May this book gently resonate in your mind, leaving a unique and profound melody.
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0.1 About This Book

This project aims to create an open-source, free, beginner-friendly introductory tutorial on data struc-
tures and algorithms.

• The entire book uses animated illustrations, with clear and easy-to-understand content and a
smooth learning curve, guiding beginners to explore the knowledge map of data structures and
algorithms.

• The source code can be run with one click, helping readers improve their programming skills
through practice and understand how algorithms work and the underlying implementation of
data structures.

• We encourage readers to learn from each other, and everyone is welcome to ask questions and
share insights in the comments section, making progress together through discussion and ex-
change.

0.1.1 Target Audience

If you are an algorithm beginner who has never been exposed to algorithms, or if you already have
some problem-solving experience and have a vague understanding of data structures and algorithms,
oscillating between knowing and not knowing, then this book is tailor-made for you!

If you have already accumulated a certain amount of problem-solving experience and are familiar with
most question types, this book can help you review and organize your algorithm knowledge system, and
the repository’s source code can be used as a “problem-solving toolkit” or “algorithm dictionary.”

If you are an algorithm “expert,” we look forward to receiving your valuable suggestions, or participating
in creation together.

Prerequisites
You need to have at least a programming foundation in any language, and be able to read and
write simple code.

0.1.2 Content Structure

The main content of this book is shown in Figure 0-1.

• Complexity analysis: Evaluation dimensions and methods for data structures and algorithms.
Methods for calculating time complexity and space complexity, common types, examples, etc.

• Data structures: Classification methods for basic data types and data structures. The definition,
advantages and disadvantages, common operations, common types, typical applications, imple-
mentationmethods, etc. of data structures such as arrays, linked lists, stacks, queues, hash tables,
trees, heaps, and graphs.

• Algorithms: The definition, advantages and disadvantages, efficiency, application scenarios,
problem-solving steps, and example problems of algorithms such as searching, sorting, divide
and conquer, backtracking, dynamic programming, and greedy algorithms.

https://www.hello-algo.com/chapter_appendix/contribution/
https://www.hello-algo.com/chapter_appendix/contribution/
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Figure 0-1 Main content of this book

0.1.3 Acknowledgements

This book has been continuously improved through the joint efforts of many contributors in the
open-source community. Thanks to every contributor who invested time and effort, they are
(in the order automatically generated by GitHub): krahets, coderonion, Gonglja, nuomi1, Reanon,
justin-tse, hpstory, danielsss, curtishd, night-cruise, S-N-O-R-L-A-X, rongyi, msk397, gvenusleo,
khoaxuantu, rivertwilight, K3v123, gyt95, zhuoqinyue, yuelinxin, Zuoxun, mingXta, Phoenix0415,
FangYuan33, GN-Yu, longsizhuo, IsChristina, xBLACKICEx, guowei-gong, Cathay-Chen, pengchzn,
QiLOL, magentaqin, hello-ikun, JoseHung, qualifier1024, thomasq0, sunshinesDL, L-Super, Guanngxu,
Transmigration-zhou, WSL0809, Slone123c, lhxsm, yuan0221, what-is-me, Shyam-Chen, theNefeli-
batas, longranger2, codeberg-user, xiongsp, JeffersonHuang, prinpal, seven1240, Wonderdch, malone6,
xiaomiusa87, gaofer, bluebean-cloud, a16su, SamJin98, hongyun-robot, nanlei, XiaChuerwu, yd-j,
iron-irax, mgisr, steventimes, junminhong, heshuyue, danny900714, MolDuM, Nigh, Dr-XYZ, XC-Zero,
reeswell, PXG-XPG, NI-SW, Horbin-Magician, Enlightenus, YangXuanyi, beatrix-chan, DullSword,
xjr7670, jiaxianhua, qq909244296, iStig, boloboloda, hts0000, gledfish, wenjianmin, keshida, kilikilikid,
lclc6, lwbaptx, linyejoe2, liuxjerry, llql1211, fbigm, echo1937, szu17dmy, dshlstarr, Yucao-cy, coder-
lef, czruby, bongbongbakudan, beintentional, ZongYangL, ZhongYuuu, ZhongGuanbin, hezhizhen,
linzeyan, ZJKung, luluxia, xb534, ztkuaikuai, yw-1021, ElaBosak233, baagod, zhouLion, yishangzhang,
yi427, yanedie, yabo083, weibk, wangwang105, th1nk3r-ing, tao363, 4yDX3906, syd168, sslmj2020,
smilelsb, siqyka, selear, sdshaoda, Xi-Row, popozhu, nuquist19, noobcodemaker, XiaoK29, chadyi,
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lyl625760, lucaswangdev, 0130w, shanghai-Jerry, EJackYang, Javesun99, eltociear, lipusheng, KNChiu,
BlindTerran, ShiMaRing, lovelock, FreddieLi, FloranceYeh, fanchenggang, gltianwen, goerll, nedchu,
curly210102, CuB3y0nd, KraHsu, CarrotDLaw, youshaoXG, bubble9um, Asashishi, Asa0oo0o0o, fanenr,
eagleanurag, akshiterate, 52coder, foursevenlove, KorsChen, GaochaoZhu, hopkings2008, yang-le,
realwujing, Evilrabbit520, Umer-Jahangir, Turing-1024-Lee, Suremotoo, paoxiaomooo, Chieko-Seren,
Allen-Scai, ymmmas, Risuntsy, Richard-Zhang1019, RafaelCaso, qingpeng9802, primexiao, Urbaner3,
zhongfq, nidhoggfgg, MwumLi, CreatorMetaSky, martinx, ZnYang2018, hugtyftg, logan-qiu, psychelzh,
Keynman, KeiichiKasai, and KawaiiAsh.

The code review work for this book was completed by coderonion, curtishd, Gonglja, gvenusleo, hp-
story, justin-tse, khoaxuantu, krahets, night-cruise, nuomi1, Reanon and rongyi (in alphabetical order).
Thanks to them for the time and effort they put in, it is they who ensure the standardization and unity
of code in various languages.

The Traditional Chinese version of this book was reviewed by Shyam-Chen and Dr-XYZ, and the En-
glish version was reviewed by yuelinxin, K3v123, QiLOL, Phoenix0415, SamJin98, yanedie, RafaelCaso,
pengchzn, thomasq0 and magentaqin. It is because of their continuous contributions that this book
can serve a wider readership, and we thank them.

The ePub ebook generation tool for this book was developed by zhongfq. We thank him for his contri-
bution, which provides readers with a more flexible way to read.

During the creation of this book, I received help from many people.

• Thanks tomymentor at the company, Dr. Li Xi, who encouragedme to “take action quickly” during
a conversation, strengthening my determination to write this book;

• Thanks tomy girlfriend Bubble as the first reader of this book, who providedmany valuable sugges-
tions from the perspective of an algorithm beginner, making this book more suitable for novices
to read;

• Thanks to Tengbao, Qibao, and Feibao for coming up with a creative name for this book, evoking
everyone’s fond memories of writing their first line of code “Hello World!”;

• Thanks to Xiaoquan for providing professional help in intellectual property rights, which played
an important role in the improvement of this open-source book;

• Thanks to Sutong for designing the beautiful cover and logo for this book, and for patientlymaking
revisions multiple times driven by my obsessive-compulsive disorder;

• Thanks to @squidfunk for the typesetting suggestions, as well as for developing the open-source
documentation theme Material-for-MkDocs.

During the writing process, I read many textbooks and articles on data structures and algorithms.
These works provided excellent examples for this book and ensured the accuracy and quality of the
book’s content. I would like to thank all the teachers and predecessors for their outstanding contribu-
tions!

This book advocates a learning method that combines hands and brain, and in this regard I was deeply
inspired by Dive into Deep Learning. I highly recommend this excellent work to all readers.

Heartfelt thanks to my parents, it is your support and encouragement that has given me the oppor-
tunity to do this interesting thing.

https://github.com/squidfunk/mkdocs-material/tree/master
https://github.com/d2l-ai/d2l-zh
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0.2 How to Use This Book

Tip
For the best reading experience, it is recommended that you read through this section.

0.2.1 Writing Style Conventions

• Titles marked with * are optional sections with relatively difficult content. If you have limited
time, you can skip them first.

• Technical terms will be in bold (in paper and PDF versions) or underlined (in web versions), such
as array. It is recommended to memorize them for reading literature.

• Key content and summary statements will be bolded, and such text deserves special attention.
• Words and phrases with specific meanings will be marked with “quotation marks” to avoid ambi-
guity.

• When it comes to nouns that are inconsistent between programming languages, this book uses
Python as the standard, for example, using None to represent “null”.

• This book partially abandons the comment conventions of programming languages in favor of
more compact content layout. Comments are mainly divided into three types: title comments,
content comments, and multi-line comments.

^* Title comment, used to label functions, classes, test cases, etc. ^/

^/ Content comment, used to explain code in detail

^^*
* Multi-line
* comment
^/

0.2.2 Learning Efficiently with Animated Illustrations

Compared to text, videos and images have higher information density and structural organization, mak-
ing them easier to understand. In this book, key and difficult knowledge will mainly be presented in
the form of animated illustrations, with text serving as explanation and supplement.

If you find that a section of content provides animated illustrations as shown in Figure 0-2while reading
this book, please focus on the illustrations first, with text as a supplement, and combine the two to
understand the content.
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Figure 0-2 Example of animated illustrations

0.2.3 Deepening Understanding Through Code Practice

The accompanying code for this book is hosted in the GitHub repository. As shown in Figure 0-3, the
source code comes with test cases and can be run with one click.

If time permits, it is recommended that you type out the code yourself. If you have limited study time,
please at least read through and run all the code.

Compared to reading code, the process of writing code often brings more rewards. Learning by doing
is the real learning.

https://github.com/krahets/hello-algo
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Figure 0-3 Example of running code

The preliminary work for running code is mainly divided into three steps.

Step 1: Install the local programming environment. Please follow the tutorial shown in the appendix
for installation. If already installed, you can skip this step.

Step 2: Clone or download the code repository. Visit the GitHub repository. If you have already in-
stalled Git, you can clone this repository with the following command:

git clone https:^/github.com/krahets/hello-algo.git

Of course, you can also click the “Download ZIP” button at the location shown in Figure 0-4 to directly
download the code compressed package, and then extract it locally.

https://www.hello-algo.com/chapter_appendix/installation/
https://github.com/krahets/hello-algo
https://git-scm.com/downloads
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Figure 0-4 Clone repository and download code

Step 3: Run the source code. As shown in Figure 0-5, for code blocks with file names at the top, we can
find the corresponding source code files in the codes folder of the repository. The source code files
can be run with one click, which will help you save unnecessary debugging time and allow you to focus
on learning content.

Figure 0-5 Code blocks and corresponding source code files

In addition to running code locally, the web version also supports visual running of Python code (im-
plemented based on pythontutor). As shown in Figure 0-6, you can click “Visual Run” below the code
block to expand the view and observe the execution process of the algorithm code; you can also click
“Full Screen View” for a better viewing experience.

https://pythontutor.com/
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Figure 0-6 Visual running of Python code

0.2.4 Growing Together Through Questions and Discussions

When reading this book, please do not easily skip knowledge points that you have not learned well. Feel
free to ask your questions in the comments section, and my friends and I will do our best to answer
you, and generally reply within two days.

As shown in Figure 0-7, the web version has a comments section at the bottom of each chapter. I hope
you will pay more attention to the content of the comments section. On the one hand, you can learn
about the problems that everyone encounters, thus checking for omissions and stimulating deeper
thinking. On the other hand, I hope you can generously answer other friends’ questions, share your
insights, and help others progress.
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Figure 0-7 Example of comments section

0.2.5 Algorithm Learning Roadmap

From an overall perspective, we can divide the process of learning data structures and algorithms into
three stages.

1. Stage 1: Algorithm introduction. We need to familiarize ourselves with the characteristics and us-
age of various data structures, and learn the principles, processes, uses, and efficiency of different
algorithms.

2. Stage 2: Practice algorithm problems. It is recommended to start with popular problems, and ac-
cumulate at least 100 problems first, to familiarize yourself with mainstream algorithm problems.
When first practicing problems, “knowledge forgetting” may be a challenge, but rest assured, this
is very normal. We can review problems according to the “Ebbinghaus forgetting curve”, and usu-
ally after 3-5 rounds of repetition, we can firmly remember them. For recommended problem
lists and practice plans, please see this GitHub repository.

3. Stage 3: Building a knowledge system. In terms of learning, we can read algorithm column ar-
ticles, problem-solving frameworks, and algorithm textbooks to continuously enrich our knowl-
edge system. In terms of practicing problems, we can try advanced problem-solving strategies,
such as categorization by topic, one problem multiple solutions, one solution multiple problems,
etc. Related problem-solving insights can be found in various communities.

As shown in Figure 0-8, the content of this book mainly covers “Stage 1”, aiming to help you more
efficiently carry out Stage 2 and Stage 3 learning.

https://github.com/krahets/LeetCode-Book
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Figure 0-8 Algorithm learning roadmap

0.3 Summary

1. Key Review

• The main audience of this book is algorithm beginners. If you already have a certain foundation,
this book can help you systematically review algorithm knowledge, and the source code in the
book can also be used as a “problem-solving toolkit.”

• The content of the book mainly includes three parts: complexity analysis, data structures, and
algorithms, covering most topics in this field.

• For algorithm novices, reading an introductory book during the initial learning stage is crucial, as
it can help you avoid many detours.

• The animated illustrations in the book are usually used to introduce key and difficult knowledge.
When reading this book, you should pay more attention to these contents.

• Practice is the best way to learn programming. It is strongly recommended to run the source
code and type the code yourself.

• The web version of this book has a comments section for each chapter, where you are welcome
to share your questions and insights at any time.
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Chapter 1. Encounter with Algorithms

Abstract
A young girl dances gracefully, intertwined with data, her skirt flowing with the melody of algo-
rithms.
She invites you to dance with her. Follow her steps closely and enter the world of algorithms,
full of logic and beauty.



Chapter 1. Encounter with Algorithms www.hello-algo.com 13

1.1 Algorithms Are Everywhere

When we hear the term “algorithm,” we naturally think of mathematics. However, many algorithms do
not involve complex mathematics but rely more on basic logic, which can be seen everywhere in our
daily lives.

Before we start discussing about algorithms officially, there’s an interesting fact worth sharing: you’ve
learned many algorithms unconsciously and are used to applying them in your daily life. Here, I will
give a few specific examples to prove this point.

Example 1: Looking Up aDictionary. In an English dictionary, words are listed alphabetically. Assuming
we’re searching for a word that starts with the letter 𝑟, this is typically done in the following way:
1. Open the dictionary to about halfway and check the first vocabulary of the page, let’s say the letter
starts with𝑚.

2. Since 𝑟 comes after 𝑚 in the alphabet, the first half can be ignored and the search space is nar-
rowed down to the second half.

3. Repeat steps 1. and 2. until you find the page where the word starts with 𝑟.

Figure 1-1 Process of looking up a dictionary
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Looking up a dictionary, an essential skill for elementary school students is actually the famous “Binary
Search” algorithm. From a data structure perspective, we can consider the dictionary as a sorted “ar-
ray”; from an algorithmic perspective, the series of actions taken to look up a word in the dictionary
can be viewed as the algorithm “Binary Search.”

Example 2: Organizing Card Deck. When playing cards, we need to arrange the cards in our hands in
ascending order, as shown in the following process.

1. Divide the playing cards into “ordered” and “unordered” sections, assuming initially the leftmost
card is already in order.

2. Take out a card from the unordered section and insert it into the correct position in the ordered
section; after this, the leftmost two cards are in order.

3. Repeat step 2 until all cards are in order.

Figure 1-2 Process of sorting a deck of cards

The above method of organizing playing cards is practically the “Insertion Sort” algorithm, which is
very efficient for small datasets. Many programming languages’ sorting functions include the insertion
sort.

Example 3: Making Change. Assume making a purchase of 69 at a supermarket. If you give the cashier
100, they will need to provide you with 31 in change. This process can be clearly understood as illus-
trated in Figure 1-3.

1. The options are currencies valued below 31, including 1, 5, 10, and 20.
2. Take out the largest 20 from the options, leaving 31 − 20 = 11.
3. Take out the largest 10 from the remaining options, leaving 11 − 10 = 1.
4. Take out the largest 1 from the remaining options, leaving 1 − 1 = 0.
5. Complete change-making, the solution is 20 + 10 + 1 = 31.
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Figure 1-3 Process of making change

In the steps described, we choose the best option at each stage by utilizing the largest denomination
available, which leads to an effective change-making strategy. From a data structures and algorithms
perspective, this approach is known as a “Greedy” algorithm.

From cooking a meal to interstellar travel, almost all problem-solving involves algorithms. The advent
of computers allows us to store data structures in memory and write code to call the CPU and GPU
to execute algorithms. In this way, we can transfer real-life problems to computers and solve various
complex issues in a more efficient way.

Tip
If you are still confused about concepts like data structures, algorithms, arrays, and binary
searches, I encourage you to keep reading. This book will gently guide you into the realm of
understanding data structures and algorithms.

1.2 What Is an Algorithm

1.2.1 Algorithm Definition

An algorithm is a set of instructions or operational steps that solves a specific problem within a finite
amount of time. It has the following characteristics.

• The problem is well-defined, with clear input and output definitions.
• It is feasible and can be completed within a finite number of steps, time, and memory space.
• Each step has a definite meaning, and under the same input and operating conditions, the output
is always the same.
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1.2.2 Data Structure Definition

A data structure is a way of organizing and storing data, covering the data content, relationships be-
tween data, and methods for data operations. It has the following design objectives.

• Occupy as little space as possible to save computer memory.
• Data operations should be as fast as possible, covering data access, addition, deletion, update, etc.
• Provide a concise data representation and logical information so that algorithms can run effi-
ciently.

Data structure design is a process full of trade-offs. If we want to achieve improvements in one aspect,
we often need to make compromises in another aspect. Here are two examples.

• Compared to arrays, linked lists are more convenient for data addition and deletion operations
but sacrifice data access speed.

• Compared to linked lists, graphs provide richer logical information but require larger memory
space.

1.2.3 The Relationship Between Data Structures and Algorithms

As shown in Figure 1-4, data structures and algorithms are highly related and tightly coupled, specifi-
cally manifested in the following three aspects.

• Data structures are the foundation of algorithms. Data structures provide algorithms with struc-
tured storage of data and methods for operating on data.

• Algorithms breathe life into data structures. Data structures themselves only store data informa-
tion; combined with algorithms, they can solve specific problems.

• Algorithms can usually be implemented based on different data structures, but execution effi-
ciency may vary greatly. Choosing the appropriate data structure is key.

Figure 1-4 The relationship between data structures and algorithms
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Data structures and algorithms are like assembling building blocks as shown in Figure 1-5. A set of
building blocks, in addition to containing many parts, also comes with detailed assembly instructions.
By following the instructions step by step, we can assemble an exquisite building block model.

Figure 1-5 Assembling blocks

The detailed correspondence between the two is shown in Table 1-1.

Table 1-1 Comparing data structures and algorithms to assembling building blocks

Data structures and algorithms Assembling building blocks

Input data Unassembled building blocks

Data structure Organization form of building blocks, including shape, size, connection
method, etc.

Algorithm A series of operational steps to assemble the blocks into the target form

Output data Building block model

It is worth noting that data structures and algorithms are independent of programming languages. For
this reason, this book is able to provide implementations based on multiple programming languages.

Conventional abbreviation
In actual discussions, we usually abbreviate “data structures and algorithms” as “algorithms”. For
example, thewell-knownLeetCode algorithmproblems actually examine knowledge of both data
structures and algorithms.
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1.3 Summary

1. Key Review

• Algorithms are ubiquitous in daily life and are not distant, esoteric knowledge. In fact, we have
already learned many algorithms unconsciously and use them to solve problems big and small in
life.

• The principle of looking up a dictionary is consistent with the binary search algorithm. Binary
search embodies the important algorithmic idea of divide and conquer.

• The process of organizing playing cards is very similar to the insertion sort algorithm. Insertion
sort is suitable for sorting small datasets.

• The steps of making change are essentially a greedy algorithm, where the best choice is made at
each step based on the current situation.

• An algorithm is a set of instructions or operational steps that solves a specific problem within a
finite amount of time, while a data structure is the way computers organize and store data.

• Data structures and algorithms are closely connected. Data structures are the foundation of al-
gorithms, and algorithms breathe life into data structures.

• We can compare data structures and algorithms to assembling building blocks. The blocks repre-
sent data, the shape and connection method of the blocks represent the data structure, and the
steps to assemble the blocks correspond to the algorithm.

2. Q & A

Q: As a programmer, I have never used algorithms to solve problems in my daily work. Common algo-
rithms are already encapsulated by programming languages and can be used directly. Does this mean
that the problems in our work have not yet reached the level where algorithms are needed?

If we compare specific work skills to “techniques” in martial arts, then fundamental subjects should be
more like “internal skills”.

I believe the significance of learning algorithms (and other fundamental subjects) is not to implement
them from scratch at work, but rather to be able to make professional reactions and judgments when
solving problems based on the knowledge learned, thereby improving the overall quality of work. Here
is a simple example. Every programming language has a built-in sorting function:

• If we have not studied data structures and algorithms, we might simply feed any given data to
this sorting function. It runs smoothly with good performance, and there doesn’t seem to be any
problem.

• But if we have studied algorithms, we would know that the time complexity of the built-in sorting
function is𝑂(𝑛 log𝑛). However, if the given data consists of integers with a fixed number of digits
(such as student IDs), we can use the more efficient “radix sort”, reducing the time complexity to
𝑂(𝑛𝑘), where 𝑘 is the number of digits. When the data volume is very large, the saved running
time can create significant value (reduced costs, improved experience, etc.).

In the field of engineering, a large number of problems are difficult to reach optimal solutions, and
many problems are only solved “approximately”. The difficulty of a problemdepends on one hand on the
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nature of the problem itself, and on the other hand on the knowledge reserve of the person observing
the problem. The more complete a person’s knowledge and the more experience they have, the deeper
their analysis of the problem will be, and the more elegantly the problem can be solved.
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Chapter 2. Complexity Analysis

Abstract
Complexity analysis is like a space-time guide in the vast universe of algorithms.
It leads us to explore deeply within the two dimensions of time and space, seeking more elegant
solutions.
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2.1 Algorithm Efficiency Evaluation

In algorithm design, we pursue the following two levels of objectives sequentially.

1. Finding a solution to the problem: The algorithmmust reliably obtain the correct solution within
the specified input range.

2. Seeking the optimal solution: Multiple solutions may exist for the same problem, and we hope to
find an algorithm that is as efficient as possible.

In other words, under the premise of being able to solve the problem, algorithm efficiency has become
the primary evaluation criterion for measuring the quality of algorithms. It includes the following two
dimensions.

• Time efficiency: The length of time the algorithm runs.
• Space efficiency: The size of memory space the algorithm occupies.

In short, our goal is to design data structures and algorithms that are “both fast and memory-
efficient”. Effectively evaluating algorithm efficiency is crucial, because only in this way can we
compare various algorithms and guide the algorithm design and optimization process.

Efficiency evaluation methods are mainly divided into two types: actual testing and theoretical estima-
tion.

2.1.1 Actual Testing

Suppose we now have algorithm A and algorithm B, both of which can solve the same problem, and
we need to compare the efficiency of these two algorithms. The most direct method is to find a com-
puter, run these two algorithms, and monitor and record their running time and memory usage. This
evaluation approach can reflect the real situation, but it also has considerable limitations.

On one hand, it is difficult to eliminate interference factors from the testing environment. Hardware
configuration affects the performance of algorithms. For example, if an algorithm has a high degree of
parallelism, it is more suitable for running on multi-core CPUs; if an algorithm has intensive memory
operations, it will perform better on high-performance memory. In other words, the test results of an
algorithm on different machines may be inconsistent. This means we need to test on various machines
and calculate average efficiency, which is impractical.

On the other hand, conducting complete testing is very resource-intensive. As the input data volume
changes, the algorithm will exhibit different efficiencies. For example, when the input data volume is
small, the running time of algorithm A is shorter than algorithm B; but when the input data volume is
large, the test results may be exactly the opposite. Therefore, to obtain convincing conclusions, we
need to test input data of various scales, which requires a large amount of computational resources.

2.1.2 Theoretical Estimation

Since actual testing has considerable limitations, we can consider evaluating algorithm efficiency
through calculations alone. This estimation method is called asymptotic complexity analysis, or
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complexity analysis for short.

Complexity analysis can reflect the relationship between the time and space resources required for
algorithm execution and the input data scale. It describes the growth trend of the time and space
required for algorithm execution as the input data scale increases. This definition is somewhat con-
voluted, so we can break it down into three key points to understand.

• “Time and space resources” correspond to time complexity and space complexity, respectively.
• “As the input data scale increases” means that complexity reflects the relationship between algo-
rithm running efficiency and input data scale.

• “Growth trend of time and space” indicates that complexity analysis focuses not on the specific
values of running time or occupied space, but on how “fast” time or space grows.

Complexity analysis overcomes the drawbacks of the actual testing method, reflected in the following
aspects.

• It does not need to actually run the code, making it more environmentally friendly and energy-
efficient.

• It is independent of the testing environment, and the analysis results are applicable to all running
platforms.

• It can reflect algorithm efficiency at different data volumes, especially algorithm performance at
large data volumes.

Tip
If you are still confused about the concept of complexity, don’t worry—we will introduce it in
detail in subsequent chapters.

Complexity analysis provides us with a “ruler” for evaluating algorithm efficiency, allowing us to mea-
sure the time and space resources required to execute a certain algorithm and compare the efficiency
between different algorithms.

Complexity is a mathematical concept that may be relatively abstract for beginners, with a relatively
high learning difficulty. From this perspective, complexity analysis may not be very suitable as the first
content to be introduced. However, when we discuss the characteristics of a certain data structure or
algorithm, it is difficult to avoid analyzing its running speed and space usage.

In summary, it is recommended that before diving deep into data structures and algorithms, you first
establish a preliminary understanding of complexity analysis so that you can complete complexity
analysis of simple algorithms.

2.2 Iteration and Recursion

In algorithms, repeatedly executing a task is very common and closely related to complexity analy-
sis. Therefore, before introducing time complexity and space complexity, let’s first understand how
to implement repeated task execution in programs, namely the two basic program control structures:
iteration and recursion.
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2.2.1 Iteration

Iteration is a control structure for repeatedly executing a task. In iteration, a program repeatedly exe-
cutes a segment of code under certain conditions until those conditions are no longer satisfied.

1. For Loop

The for loop is one of the most common forms of iteration, suitable for use when the number of
iterations is known in advance.

The following function implements the summation 1 + 2 + ⋯ + 𝑛 based on a for loop, with the sum
result recorded using the variable res. Note that in Python, range(a, b) corresponds to a “left-closed,
right-open” interval, with the traversal range being 𝑎, 𝑎 + 1,… , 𝑏 − 1:
^/ ^^= File: iteration.cpp ^^=

^* for loop ^/
int forLoop(int n) {

int res = 0;
^/ Sum 1, 2, ^^., n-1, n
for (int i = 1; i <= n; ^+i) {

res += i;
}
return res;

}

Figure 2-1 shows the flowchart of this summation function.

Figure 2-1 Flowchart of the summation function

The number of operations in this summation function is proportional to the input data size 𝑛, or has
a “linear relationship”. In fact, time complexity describes precisely this “linear relationship”. Related
content will be introduced in detail in the next section.
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2. While Loop

Similar to the for loop, the while loop is also a method for implementing iteration. In a while loop,
the program first checks the condition in each round; if the condition is true, it continues execution,
otherwise it ends the loop.

Below we use a while loop to implement the summation 1 + 2 + ⋯ + 𝑛:

^/ ^^= File: iteration.cpp ^^=

^* while loop ^/
int whileLoop(int n) {

int res = 0;
int i = 1; ^/ Initialize condition variable
^/ Sum 1, 2, ^^., n-1, n
while (i <= n) {

res += i;
i^+; ^/ Update condition variable

}
return res;

}

The while loop has greater flexibility than the for loop. In a while loop, we can freely design the
initialization and update steps of the condition variable.

For example, in the following code, the condition variable 𝑖 is updated twice per round, which is not
convenient to implement using a for loop:

^/ ^^= File: iteration.cpp ^^=

^* while loop (two updates) ^/
int whileLoopII(int n) {

int res = 0;
int i = 1; ^/ Initialize condition variable
^/ Sum 1, 4, 10, ^^.
while (i <= n) {

res += i;
^/ Update condition variable
i^+;
i *= 2;

}
return res;

}

Overall, for loops have more compact code, while while loops are more flexible; both can implement
iterative structures. The choice of which to use should be determined based on the requirements of
the specific problem.

3. Nested Loops

We can nest one loop structure inside another. Below is an example using for loops:
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^/ ^^= File: iteration.cpp ^^=

^* Nested for loop ^/
string nestedForLoop(int n) {

ostringstream res;
^/ Loop i = 1, 2, ^^., n-1, n
for (int i = 1; i <= n; ^+i) {

^/ Loop j = 1, 2, ^^., n-1, n
for (int j = 1; j <= n; ^+j) {

res << "(" << i << ", " << j << "), ";
}

}
return res.str();

}

Figure 2-2 shows the flowchart of this nested loop.

Figure 2-2 Flowchart of nested loops

In this case, the number of operations of the function is proportional to 𝑛2, or the algorithm’s running
time has a “quadratic relationship” with the input data size 𝑛.
We can continue adding nested loops, where each nesting is a “dimension increase”, raising the time
complexity to “cubic relationship”, “quartic relationship”, and so on.

2.2.2 Recursion

Recursion is an algorithmic strategy that solves problems by having a function call itself. It mainly
consists of two phases.

1. Descend: The program continuously calls itself deeper, usually passing in smaller or more simpli-
fied parameters, until reaching a “termination condition”.



Chapter 2. Complexity Analysis www.hello-algo.com 26

2. Ascend: After triggering the “termination condition”, the program returns layer by layer from the
deepest recursive function, aggregating the result of each layer.

From an implementation perspective, recursive code mainly consists of three elements.

1. Termination condition: Used to determine when to switch from “descending” to “ascending”.
2. Recursive call: Corresponds to “descending”, where the function calls itself, usually with smaller
or more simplified parameters.

3. Return result: Corresponds to “ascending”, returning the result of the current recursion level to
the previous layer.

Observe the following code. We only need to call the function recur(n) to complete the calculation of
1 + 2 + ⋯ + 𝑛:

^/ ^^= File: recursion.cpp ^^=

^* Recursion ^/
int recur(int n) {

^/ Termination condition
if (n ^= 1)

return 1;
^/ Recurse: recursive call
int res = recur(n - 1);
^/ Return: return result
return n + res;

}

Figure 2-3 shows the recursive process of this function.

Figure 2-3 Recursive process of the summation function

Although from a computational perspective, iteration and recursion can achieve the same results, they
represent two completely different paradigms for thinking about and solving problems.
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• Iteration: Solves problems “bottom-up”. Starting from the most basic steps, these steps are then
repeatedly executed or accumulated until the task is complete.

• Recursion: Solves problems “top-down”. The original problem is decomposed into smaller sub-
problems that have the same form as the original problem. These subproblems continue to be
decomposed into even smaller subproblems until reaching the base case (where the solution is
known).

Taking the above summation function as an example, let the problem be 𝑓(𝑛) = 1 + 2 + ⋯ + 𝑛.
• Iteration: Simulates the summation process in a loop, traversing from 1 to 𝑛, performing the
summation operation in each round to obtain 𝑓(𝑛).

• Recursion: Decomposes the problem into the subproblem 𝑓(𝑛) = 𝑛 + 𝑓(𝑛 − 1), continuously
decomposing (recursively) until terminating at the base case 𝑓(1) = 1.

1. Call Stack

Each time a recursive function calls itself, the system allocates memory for the newly opened function
to store local variables, call addresses, and other information. This leads to two consequences.

• The function’s context data is stored in a memory area called “stack frame space”, which is not
released until the function returns. Therefore, recursion usually consumes more memory space
than iteration.

• Recursive function calls incur additional overhead. Therefore, recursion is usually less time-
efficient than loops.

As shown in Figure 2-4, before the termination condition is triggered, there are 𝑛 unreturned recursive
functions existing simultaneously, with a recursion depth of 𝑛.

Figure 2-4 Recursion call depth

In practice, the recursion depth allowed by programming languages is usually limited, and excessively
deep recursion may lead to stack overflow errors.
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2. Tail Recursion

Interestingly, if a functionmakes the recursive call as the very last step before returning, the function
can be optimized by the compiler or interpreter to have space efficiency comparable to iteration. This
case is called tail recursion.

• Regular recursion: When a function returns to the previous level, it needs to continue executing
code, so the system needs to save the context of the previous layer’s call.

• Tail recursion: The recursive call is the last operation before the function returns, meaning that
after returning to the previous level, there is no need to continue executing other operations, so
the system does not need to save the context of the previous layer’s function.

Taking the calculation of 1 + 2 + ⋯ + 𝑛 as an example, we can set the result variable res as a function
parameter to implement tail recursion:

^/ ^^= File: recursion.cpp ^^=

^* Tail recursion ^/
int tailRecur(int n, int res) {

^/ Termination condition
if (n ^= 0)

return res;
^/ Tail recursive call
return tailRecur(n - 1, res + n);

}

The execution process of tail recursion is shown in Figure 2-5. Comparing regular recursion and tail
recursion, the execution point of the summation operation is different.

• Regular recursion: The summation operation is performed during the “ascending” process, re-
quiring an additional summation operation after each layer returns.

• Tail recursion: The summation operation is performed during the “descending” process; the “as-
cending” process only needs to return layer by layer.
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Figure 2-5 Tail recursion process

Tip
Please note that many compilers or interpreters do not support tail recursion optimization. For
example, Python does not support tail recursion optimization by default, so even if a function is
in tail recursive form, it may still encounter stack overflow issues.

3. Recursion Tree

When dealing with algorithmic problems related to “divide and conquer”, recursion often provides a
more intuitive approach and more readable code than iteration. Taking the “Fibonacci sequence” as an
example.

Question
Given a Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, …, find the 𝑛-th number in the sequence.

Let the 𝑛-th number of the Fibonacci sequence be 𝑓(𝑛). Two conclusions can be easily obtained.
• The first two numbers of the sequence are 𝑓(1) = 0 and 𝑓(2) = 1.
• Each number in the sequence is the sum of the previous two numbers, i.e., 𝑓(𝑛) = 𝑓(𝑛 − 1) +

𝑓(𝑛 − 2).
Following the recurrence relation to make recursive calls, with the first two numbers as termination
conditions, we can write the recursive code. Calling fib(n) will give us the 𝑛-th number of the Fi-
bonacci sequence:

^/ ^^= File: recursion.cpp ^^=

^* Fibonacci sequence: recursion ^/
int fib(int n) {

^/ Termination condition f(1) = 0, f(2) = 1
if (n ^= 1 ^| n ^= 2)

return n - 1;
^/ Recursive call f(n) = f(n-1) + f(n-2)
int res = fib(n - 1) + fib(n - 2);
^/ Return result f(n)
return res;

}

Observing the above code, we recursively call two functions within the function,meaning that one call
produces two call branches. As shown in Figure 2-6, such continuous recursive calling will eventually
produce a recursion tree with 𝑛 levels.
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Figure 2-6 Recursion tree of the Fibonacci sequence

Fundamentally, recursion embodies the paradigm of “decomposing a problem into smaller subprob-
lems”, and this divide-and-conquer strategy is crucial.

• From an algorithmic perspective, many important algorithmic strategies such as searching, sort-
ing, backtracking, divide and conquer, and dynamic programming directly or indirectly apply this
way of thinking.

• From a data structure perspective, recursion is naturally suited for handling problems related to
linked lists, trees, and graphs, because they are well-suited for analysis using divide-and-conquer
thinking.

2.2.3 Comparison of the Two

Summarizing the above content, as shown in Table 2-1, iteration and recursion differ in implementation,
performance, and applicability.

Table 2-1 Comparison of iteration and recursion characteristics

Iteration Recursion

ImplementationLoop structure Function calls itself

Time effi-
ciency

Generally more efficient, no function
call overhead

Each function call incurs overhead

Memory
usage

Usually uses a fixed amount of
memory space

Accumulated function calls may use a large amount of
stack frame space

Suitable
problems

Suitable for simple loop tasks, with
intuitive and readable code

Suitable for subproblem decomposition, such as trees,
graphs, divide and conquer, backtracking, etc., with
concise and clear code structure
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Tip
If you find the following content difficult to understand, you can review it after reading the
“Stack” chapter.

What is the intrinsic relationship between iteration and recursion? Taking the above recursive function
as an example, the summation operation is performed during the “ascending” phase of recursion. This
means that the function called first actually completes its summation operation last, and this working
mechanism is similar to the “last-in, first-out” principle of stacks.

In fact, recursive terminology such as “call stack” and “stack frame space” already hints at the close
relationship between recursion and stacks.

1. Descend: When a function is called, the system allocates a new stack frame on the “call stack” for
that function to store the function’s local variables, parameters, return address, and other data.

2. Ascend: When the function completes execution and returns, the corresponding stack frame is
removed from the “call stack”, restoring the execution environment of the previous function.

Therefore, we can use an explicit stack to simulate the behavior of the call stack, thus transforming
recursion into iterative form:

^/ ^^= File: recursion.cpp ^^=

^* Simulate recursion using iteration ^/
int forLoopRecur(int n) {

^/ Use an explicit stack to simulate the system call stack
stack<int> stack;
int res = 0;
^/ Recurse: recursive call
for (int i = n; i > 0; i--) {

^/ Simulate "recurse" with "push"
stack.push(i);

}
^/ Return: return result
while (!stack.empty()) {

^/ Simulate "return" with "pop"
res += stack.top();
stack.pop();

}
^/ res = 1+2+3+^^.+n
return res;

}

Observing the above code, when recursion is transformed into iteration, the code becomes more com-
plex. Although iteration and recursion can be converted into each other in many cases, it may not be
worthwhile to do so for the following two reasons.

• The transformed code may be more difficult to understand and less readable.
• For some complex problems, simulating the behavior of the system call stack can be very difficult.

In summary, choosing between iteration and recursion depends on the nature of the specific problem.
In programming practice, it is crucial to weigh the pros and cons of both and choose the appropriate
method based on the context.
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2.3 Time Complexity

Runtime can intuitively and accurately reflect the efficiency of an algorithm. If we want to accurately
estimate the runtime of a piece of code, how should we proceed?

1. Determine the running platform, including hardware configuration, programming language, sys-
tem environment, etc., as these factors all affect code execution efficiency.

2. Evaluate the runtime required for various computational operations, for example, an addition
operation + requires 1 ns, a multiplication operation * requires 10 ns, a print operation print()
requires 5 ns, etc.

3. Count all computational operations in the code, and sum the execution times of all operations to
obtain the runtime.

For example, in the following code, the input data size is 𝑛:

^/ On a certain running platform
void algorithm(int n) {

int a = 2; ^/ 1 ns
a = a + 1; ^/ 1 ns
a = a * 2; ^/ 10 ns
^/ Loop n times
for (int i = 0; i < n; i^+) { ^/ 1 ns

cout << 0 << endl; ^/ 5 ns
}

}

According to the above method, the algorithm’s runtime can be obtained as (6𝑛 + 12) ns:

1 + 1 + 10 + (1 + 5) × 𝑛 = 6𝑛 + 12

In reality, however, counting an algorithm’s runtime is neither reasonable nor realistic. First, we do
not want to tie the estimated time to the running platform, because algorithms need to run on various
different platforms. Second, it is difficult to know the runtime of each type of operation, which brings
great difficulty to the estimation process.

2.3.1 Counting Time Growth Trends

Time complexity analysis does not count the algorithm’s runtime, but rather counts the growth trend
of the algorithm’s runtime as the data volume increases.

The concept of “time growth trend” is rather abstract; let us understand it through an example. Suppose
the input data size is 𝑛, and given three algorithms A, B, and C:

^/ Time complexity of algorithm A: constant order
void algorithm_A(int n) {

cout << 0 << endl;
}
^/ Time complexity of algorithm B: linear order
void algorithm_B(int n) {
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for (int i = 0; i < n; i^+) {
cout << 0 << endl;

}
}
^/ Time complexity of algorithm C: constant order
void algorithm_C(int n) {

for (int i = 0; i < 1000000; i^+) {
cout << 0 << endl;

}
}

Figure 2-7 shows the time complexity of the above three algorithm functions.

• Algorithm A has only 1 print operation, and the algorithm’s runtime does not grow as 𝑛 increases.
We call the time complexity of this algorithm “constant order”.

• In algorithm B, the print operation needs to loop 𝑛 times, and the algorithm’s runtime grows
linearly as 𝑛 increases. The time complexity of this algorithm is called “linear order”.

• In algorithm C, the print operation needs to loop 1000000 times. Although the runtime is very
long, it is independent of the input data size 𝑛. Therefore, the time complexity of C is the same as
A, still “constant order”.

Figure 2-7 Time growth trends of algorithms A, B, and C

Compared to directly counting the algorithm’s runtime, what are the characteristics of time complexity
analysis?

• Time complexity can effectively evaluate algorithm efficiency. For example, the runtime of al-
gorithm B grows linearly; when 𝑛 > 1 it is slower than algorithm A, and when 𝑛 > 1000000 it is
slower than algorithm C. In fact, as long as the input data size 𝑛 is sufficiently large, an algorithm
with “constant order” complexity will always be superior to one with “linear order” complexity,
which is precisely the meaning of time growth trend.

• The derivation method for time complexity is simpler. Obviously, the running platform and the
types of computational operations are both unrelated to the growth trend of the algorithm’s run-
time. Therefore, in time complexity analysis, we can simply treat the execution time of all compu-
tational operations as the same “unit time”, thus simplifying “counting computational operation
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runtime” to “counting the number of computational operations”, which greatly reduces the diffi-
culty of estimation.

• Time complexity also has certain limitations. For example, although algorithms A and C have the
same time complexity, their actual runtimes differ significantly. Similarly, although algorithm B
has a higher time complexity than C, when the input data size 𝑛 is small, algorithm B is clearly
superior to algorithm C. In such cases, it is often difficult to judge the efficiency of algorithms
based solely on time complexity. Of course, despite the above issues, complexity analysis remains
the most effective and commonly used method for evaluating algorithm efficiency.

2.3.2 Asymptotic Upper Bound of Functions

Given a function with input size 𝑛:

void algorithm(int n) {
int a = 1; ^/ +1
a = a + 1; ^/ +1
a = a * 2; ^/ +1
^/ Loop n times
for (int i = 0; i < n; i^+) { ^/ +1 (i^+ is executed each round)

cout << 0 << endl; ^/ +1
}

}

Let the number of operations of the algorithm be a function of the input data size 𝑛, denoted as 𝑇 (𝑛).
Then the number of operations of the above function is:

𝑇 (𝑛) = 3 + 2𝑛

𝑇 (𝑛) is a linear function, indicating that its runtime growth trend is linear, and therefore its time com-
plexity is linear order.

We denote the time complexity of linear order as 𝑂(𝑛). This mathematical symbol is called big-𝑂
notation, representing the asymptotic upper bound of the function 𝑇 (𝑛).
Time complexity analysis essentially calculates the asymptotic upper bound of “the number of opera-
tions 𝑇 (𝑛)”, which has a clear mathematical definition.

Asymptotic upper bound of functions
If there exist positive real numbers 𝑐 and 𝑛0 such that for all 𝑛 > 𝑛0, we have 𝑇 (𝑛) ≤ 𝑐 ⋅
𝑓(𝑛), then 𝑓(𝑛) can be considered as an asymptotic upper bound of 𝑇 (𝑛), denoted as 𝑇 (𝑛) =
𝑂(𝑓(𝑛)).

As shown in Figure 2-8, calculating the asymptotic upper bound is to find a function 𝑓(𝑛) such that
when 𝑛 tends to infinity, 𝑇 (𝑛) and 𝑓(𝑛) are at the same growth level, differing only by a constant
coefficient 𝑐.
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Figure 2-8 Asymptotic upper bound of a function

2.3.3 Derivation Method

The asymptotic upper bound has a bit of mathematical flavor. If you feel you haven’t fully understood it,
don’t worry. We can first master the derivation method, and gradually grasp its mathematical meaning
through continuous practice.

According to the definition, after determining 𝑓(𝑛), we can obtain the time complexity 𝑂(𝑓(𝑛)). So
how do we determine the asymptotic upper bound 𝑓(𝑛)? Overall, it is divided into two steps: first
count the number of operations, then determine the asymptotic upper bound.

1. Step 1: Count the Number of Operations

For code, count from top to bottom line by line. However, since the constant coefficient 𝑐 in 𝑐 ⋅ 𝑓(𝑛)
above can be of any size, coefficients and constant terms in the number of operations 𝑇 (𝑛) can all be
ignored. According to this principle, the following counting simplification techniques can be summa-
rized.

1. Ignore constants in 𝑇 (𝑛). Because they are all independent of 𝑛, they do not affect time com-
plexity.

2. Omit all coefficients. For example, looping 2𝑛 times, 5𝑛 + 1 times, etc., can all be simplified as 𝑛
times, because the coefficient before 𝑛 does not affect time complexity.

3. Use multiplication for nested loops. The total number of operations equals the product of the
number of operations in the outer and inner loops, with each layer of loop still able to apply
techniques 1. and 2. separately.

Given a function, we can use the above techniques to count the number of operations:
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void algorithm(int n) {
int a = 1; ^/ +0 (Technique 1)
a = a + n; ^/ +0 (Technique 1)
^/ +n (Technique 2)
for (int i = 0; i < 5 * n + 1; i^+) {

cout << 0 << endl;
}
^/ +n*n (Technique 3)
for (int i = 0; i < 2 * n; i^+) {

for (int j = 0; j < n + 1; j^+) {
cout << 0 << endl;

}
}

}

The following formula shows the counting results before and after using the above techniques; both
derive a time complexity of𝑂(𝑛2).

𝑇 (𝑛) = 2𝑛(𝑛 + 1) + (5𝑛 + 1) + 2 Complete count (-.-|||)

= 2𝑛2 + 7𝑛 + 3
𝑇(𝑛) = 𝑛2 + 𝑛 Simplified count (o.O)

2. Step 2: Determine the Asymptotic Upper Bound

Time complexity is determined by the highest-order term in 𝑇 (𝑛). This is because as 𝑛 tends to
infinity, the highest-order term will play a dominant role, and the influence of other terms can be
ignored.

Table 2-2 shows some examples, where some exaggerated values are used to emphasize the conclusion
that “coefficients cannot shake the order”. When 𝑛 tends to infinity, these constants become insignifi-
cant.

Table 2-2 Time complexities corresponding to different numbers of operations

Number of Operations 𝑇 (𝑛) Time Complexity𝑂(𝑓(𝑛))

100000 𝑂(1)
3𝑛 + 2 𝑂(𝑛)
2𝑛2 + 3𝑛 + 2 𝑂(𝑛2)
𝑛3 + 10000𝑛2 𝑂(𝑛3)
2𝑛 + 10000𝑛10000 𝑂(2𝑛)

2.3.4 Common Types

Let the input data size be 𝑛. Common time complexity types are shown in Figure 2-9 (arranged in order
from low to high).
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𝑂(1) < 𝑂(log𝑛) < 𝑂(𝑛) < 𝑂(𝑛 log𝑛) < 𝑂(𝑛2) < 𝑂(2𝑛) < 𝑂(𝑛!)
Constant order < Logarithmic order < Linear order < Linearithmic order < Quadratic order < Exponential order < Factorial order

Figure 2-9 Common time complexity types

1. Constant Order𝑂(1)

The number of operations in constant order is independent of the input data size 𝑛, meaning it does
not change as 𝑛 changes.
In the following function, although the number of operations sizemay be large, since it is independent
of the input data size 𝑛, the time complexity remains𝑂(1):

^/ ^^= File: time_complexity.cpp ^^=

^* Constant order ^/
int constant(int n) {

int count = 0;
int size = 100000;
for (int i = 0; i < size; i^+)

count^+;
return count;

}

2. Linear Order𝑂(𝑛)

The number of operations in linear order grows linearly relative to the input data size 𝑛. Linear order
typically appears in single-layer loops:

^/ ^^= File: time_complexity.cpp ^^=

^* Linear order ^/
int linear(int n) {
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int count = 0;
for (int i = 0; i < n; i^+)

count^+;
return count;

}

Operations such as traversing arrays and traversing linked lists have a time complexity of𝑂(𝑛), where
𝑛 is the length of the array or linked list:

^/ ^^= File: time_complexity.cpp ^^=

^* Linear order (traversing array) ^/
int arrayTraversal(vector<int> &nums) {

int count = 0;
^/ Number of iterations is proportional to the array length
for (int num : nums) {

count^+;
}
return count;

}

It is worth noting that the input data size 𝑛 should be determined according to the type of input data.
For example, in the first example, the variable 𝑛 is the input data size; in the second example, the array
length 𝑛 is the data size.

3. Quadratic Order𝑂(𝑛2)

The number of operations in quadratic order grows quadratically relative to the input data size 𝑛.
Quadratic order typically appears in nested loops, where both the outer and inner loops have a time
complexity of𝑂(𝑛), resulting in an overall time complexity of𝑂(𝑛2):

^/ ^^= File: time_complexity.cpp ^^=

^* Exponential order ^/
int quadratic(int n) {

int count = 0;
^/ Number of iterations is quadratically related to the data size n
for (int i = 0; i < n; i^+) {

for (int j = 0; j < n; j^+) {
count^+;

}
}
return count;

}

Figure 2-10 compares constant order, linear order, and quadratic order time complexities.
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Figure 2-10 Time complexities of constant, linear, and quadratic orders

Taking bubble sort as an example, the outer loop executes𝑛−1 times, and the inner loop executes𝑛−1,
𝑛−2,…, 2, 1 times, averaging 𝑛/2 times, resulting in a time complexity of𝑂((𝑛−1)𝑛/2) = 𝑂(𝑛2):

^/ ^^= File: time_complexity.cpp ^^=

^* Quadratic order (bubble sort) ^/
int bubbleSort(vector<int> &nums) {

int count = 0; ^/ Counter
^/ Outer loop: unsorted range is [0, i]
for (int i = nums.size() - 1; i > 0; i--) {

^/ Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end
of that range↪

for (int j = 0; j < i; j^+) {
if (nums[j] > nums[j + 1]) {

^/ Swap nums[j] and nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; ^/ Element swap includes 3 unit operations

}
}

}
return count;

}

4. Exponential Order𝑂(2𝑛)

Biological “cell division” is a typical example of exponential order growth: the initial state is 1 cell, after
one round of division it becomes 2, after two rounds it becomes 4, and so on; after 𝑛 rounds of division
there are 2𝑛 cells.

Figure 2-11 and the following code simulate the cell division process, with a time complexity of 𝑂(2𝑛).
Note that the input 𝑛 represents the number of division rounds, and the return value count represents
the total number of divisions.
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^/ ^^= File: time_complexity.cpp ^^=

^* Exponential order (loop implementation) ^/
int exponential(int n) {

int count = 0, base = 1;
^/ Cells divide into two every round, forming sequence 1, 2, 4, 8, ^^., 2^(n-1)
for (int i = 0; i < n; i^+) {

for (int j = 0; j < base; j^+) {
count^+;

}
base *= 2;

}
^/ count = 1 + 2 + 4 + 8 + ^. + 2^(n-1) = 2^n - 1
return count;

}

Figure 2-11 Time complexity of exponential order

In actual algorithms, exponential order often appears in recursive functions. For example, in the fol-
lowing code, it recursively splits in two, stopping after 𝑛 splits:

^/ ^^= File: time_complexity.cpp ^^=

^* Exponential order (recursive implementation) ^/
int expRecur(int n) {

if (n ^= 1)
return 1;

return expRecur(n - 1) + expRecur(n - 1) + 1;
}

Exponential order growth is very rapid and is common in exhaustivemethods (brute force search, back-
tracking, etc.). For problems with large data scales, exponential order is unacceptable and typically
requires dynamic programming or greedy algorithms to solve.
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5. Logarithmic Order𝑂(log𝑛)

In contrast to exponential order, logarithmic order reflects the situation of “reducing to half each
round”. Let the input data size be 𝑛. Since it is reduced to half each round, the number of loops is
log2 𝑛, which is the inverse function of 2𝑛.

Figure 2-12 and the following code simulate the process of “reducing to half each round”, with a time
complexity of𝑂(log2 𝑛), abbreviated as𝑂(log𝑛):

^/ ^^= File: time_complexity.cpp ^^=

^* Logarithmic order (loop implementation) ^/
int logarithmic(int n) {

int count = 0;
while (n > 1) {

n = n / 2;
count^+;

}
return count;

}

Figure 2-12 Time complexity of logarithmic order

Like exponential order, logarithmic order also commonly appears in recursive functions. The following
code forms a recursion tree of height log2 𝑛:

^/ ^^= File: time_complexity.cpp ^^=

^* Logarithmic order (recursive implementation) ^/
int logRecur(int n) {

if (n <= 1)
return 0;

return logRecur(n / 2) + 1;
}
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Logarithmic order commonly appears in algorithms based on the divide-and-conquer strategy, em-
bodying the algorithmic thinking of “dividing into many” and “simplifying complexity”. It grows slowly
and is the ideal time complexity second only to constant order.

What is the base of𝑂(log𝑛)?
To be precise, “dividing into 𝑚” corresponds to a time complexity of 𝑂(log𝑚 𝑛). And through
the logarithmic base change formula, we can obtain time complexities with different bases that
are equal:

𝑂(log𝑚 𝑛) = 𝑂(log𝑘 𝑛/ log𝑘 𝑚) = 𝑂(log𝑘 𝑛)
That is to say, the base 𝑚 can be converted without affecting the complexity. Therefore, we
usually omit the base𝑚 and denote logarithmic order simply as𝑂(log𝑛).

6. Linearithmic Order𝑂(𝑛 log𝑛)

Linearithmic order commonly appears in nested loops, where the time complexities of the two layers
of loops are𝑂(log𝑛) and𝑂(𝑛) respectively. The relevant code is as follows:

^/ ^^= File: time_complexity.cpp ^^=

^* Linearithmic order ^/
int linearLogRecur(int n) {

if (n <= 1)
return 1;

int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i^+) {

count^+;
}
return count;

}

Figure 2-13 shows how linearithmic order is generated. Each level of the binary tree has a total of 𝑛
operations, and the tree has log2 𝑛 + 1 levels, resulting in a time complexity of𝑂(𝑛 log𝑛).
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Figure 2-13 Time complexity of linearithmic order

Mainstream sorting algorithms typically have a time complexity of𝑂(𝑛 log𝑛), such as quicksort, merge
sort, and heap sort.

7. Factorial Order𝑂(𝑛!)

Factorial order corresponds to the mathematical “permutation” problem. Given 𝑛 distinct elements,
find all possible permutation schemes; the number of schemes is:

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯ × 2 × 1

Factorials are typically implemented using recursion. As shown in Figure 2-14 and the following code,
the first level splits into 𝑛 branches, the second level splits into 𝑛 − 1 branches, and so on, until the
𝑛-th level when splitting stops:

^/ ^^= File: time_complexity.cpp ^^=

^* Factorial order (recursive implementation) ^/
int factorialRecur(int n) {

if (n ^= 0)
return 1;

int count = 0;
^/ Split from 1 into n
for (int i = 0; i < n; i^+) {

count += factorialRecur(n - 1);
}
return count;

}
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Figure 2-14 Time complexity of factorial order

Note that because when 𝑛 ≥ 4 we always have 𝑛! > 2𝑛, factorial order grows faster than exponential
order, and is also unacceptable for large 𝑛.

2.3.5 Worst, Best, and Average Time Complexities

The time efficiency of an algorithm is often not fixed, but is related to the distribution of the input
data. Suppose we input an array nums of length 𝑛, where nums consists of numbers from 1 to 𝑛, with
each number appearing only once, but the element order is randomly shuffled. The task is to return
the index of element 1. We can draw the following conclusions.

• When nums = [?, ?, ^^., 1], i.e., when the last element is 1, it requires a complete traversal of
the array, reaching worst-case time complexity𝑂(𝑛).

• When nums = [1, ?, ?, ^^.], i.e., when the first element is 1, no matter how long the array is,
there is no need to continue traversing, reaching best-case time complexity Ω(1).

The “worst-case time complexity” corresponds to the function’s asymptotic upper bound, denoted us-
ing big-𝑂 notation. Correspondingly, the “best-case time complexity” corresponds to the function’s
asymptotic lower bound, denoted using Ω notation:

^/ ^^= File: worst_best_time_complexity.cpp ^^=

^* Generate an array with elements { 1, 2, ^^., n }, order shuffled ^/
vector<int> randomNumbers(int n) {

vector<int> nums(n);
^/ Generate array nums = { 1, 2, 3, ^^., n }
for (int i = 0; i < n; i^+) {

nums[i] = i + 1;
}
^/ Use system time to generate random seed
unsigned seed = chrono^:system_clock^:now().time_since_epoch().count();
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^/ Randomly shuffle array elements
shuffle(nums.begin(), nums.end(), default_random_engine(seed));
return nums;

}

^* Find the index of number 1 in array nums ^/
int findOne(vector<int> &nums) {

for (int i = 0; i < nums.size(); i^+) {
^/ When element 1 is at the head of the array, best time complexity O(1) is achieved
^/ When element 1 is at the tail of the array, worst time complexity O(n) is achieved
if (nums[i] ^= 1)

return i;
}
return -1;

}

It is worth noting that we rarely use best-case time complexity in practice, because it can usually only
be achieved with a very small probability andmay be somewhat misleading. The worst-case time com-
plexity is more practical because it gives a safety value for efficiency, allowing us to use the algorithm
with confidence.

From the above example, we can see that both worst-case and best-case time complexities only occur
under “special data distributions”, which may have a very small probability of occurrence and may not
truly reflect the algorithm’s running efficiency. In contrast, average time complexity can reflect the
algorithm’s running efficiency under random input data, denoted using theΘ notation.

For some algorithms, we can simply derive the average case under random data distribution. For ex-
ample, in the above example, since the input array is shuffled, the probability of element 1 appearing
at any index is equal, so the algorithm’s average number of loops is half the array length 𝑛/2, giving an
average time complexity ofΘ(𝑛/2) = Θ(𝑛).
But formore complex algorithms, calculating average time complexity is often quite difficult, because it
is hard to analyze the overall mathematical expectation under data distribution. In this case, we usually
use worst-case time complexity as the criterion for judging algorithm efficiency.

Why is theΘ symbol rarely seen?
This may be because the 𝑂 symbol is too catchy, so we often use it to represent average time
complexity. But strictly speaking, this practice is not standard. In this book and other materials,
if you encounter expressions like “average time complexity 𝑂(𝑛)”, please understand it directly
asΘ(𝑛).

2.4 Space Complexity

Space complexity measures the growth trend of memory space occupied by an algorithm as the data
size increases. This concept is very similar to time complexity, except that “running time” is replaced
with “occupied memory space”.
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2.4.1 Algorithm-Related Space

The memory space used by an algorithm during execution mainly includes the following types.

• Input space: Used to store the input data of the algorithm.
• Temporary space: Used to store variables, objects, function contexts, and other data during the
algorithm’s execution.

• Output space: Used to store the output data of the algorithm.

In general, the scope of space complexity statistics is “temporary space” plus “output space”.

Temporary space can be further divided into three parts.

• Temporary data: Used to save various constants, variables, objects, etc., during the algorithm’s
execution.

• Stack frame space: Used to save the context data of called functions. The system creates a stack
frame at the top of the stack each time a function is called, and the stack frame space is released
after the function returns.

• Instruction space: Used to save compiled program instructions, which are usually ignored in
actual statistics.

When analyzing the space complexity of a program, we usually count three parts: temporary data,
stack frame space, and output data, as shown in the following figure.

Figure 2-15 Algorithm-related space

The related code is as follows:

^* Structure ^/
struct Node {

int val;
Node *next;
Node(int x) : val(x), next(nullptr) {}

};

^* Function ^/
int func() {

^/ Perform some operations^^.
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return 0;
}

int algorithm(int n) { ^/ Input data
const int a = 0; ^/ Temporary data (constant)
int b = 0; ^/ Temporary data (variable)
Node* node = new Node(0); ^/ Temporary data (object)
int c = func(); ^/ Stack frame space (function call)
return a + b + c; ^/ Output data

}

2.4.2 Calculation Method

The calculation method for space complexity is roughly the same as for time complexity, except that
the statistical object is changed from “number of operations” to “size of space used”.

Unlike time complexity, we usually only focus on the worst-case space complexity. This is because
memory space is a hard requirement, and we must ensure that sufficient memory space is reserved for
all input data.

Observe the following code. The “worst case” in worst-case space complexity has two meanings.

1. Based on the worst input data: When 𝑛 < 10, the space complexity is 𝑂(1); but when 𝑛 > 10,
the initialized array nums occupies𝑂(𝑛) space, so the worst-case space complexity is𝑂(𝑛).

2. Based on the peak memory during algorithm execution: For example, before executing the last
line, the program occupies 𝑂(1) space; when initializing the array nums, the program occupies
𝑂(𝑛) space, so the worst-case space complexity is𝑂(𝑛).

void algorithm(int n) {
int a = 0; ^/ O(1)
vector<int> b(10000); ^/ O(1)
if (n > 10)

vector<int> nums(n); ^/ O(n)
}

In recursive functions, it is necessary to count the stack frame space. Observe the following code:

int func() {
^/ Perform some operations
return 0;

}
^* Loop has space complexity of O(1) ^/
void loop(int n) {

for (int i = 0; i < n; i^+) {
func();

}
}
^* Recursion has space complexity of O(n) ^/
void recur(int n) {

if (n ^= 1) return;
recur(n - 1);

}
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The time complexity of both functions loop() and recur() is 𝑂(𝑛), but their space complexities are
different.

• The function loop() calls function() 𝑛 times in a loop. In each iteration, function() returns
and releases its stack frame space, so the space complexity remains𝑂(1).

• The recursive function recur() has 𝑛 unreturned recur() instances existing simultaneously dur-
ing execution, thus occupying𝑂(𝑛) stack frame space.

2.4.3 Common Types

Let the input data size be 𝑛. The following figure shows common types of space complexity (arranged
from low to high).

𝑂(1) < 𝑂(log𝑛) < 𝑂(𝑛) < 𝑂(𝑛2) < 𝑂(2𝑛)
Constant < Logarithmic < Linear < Quadratic < Exponential

Figure 2-16 Common types of space complexity

1. Constant Order𝑂(1)

Constant order is common in constants, variables, and objects whose quantity is independent of the
input data size 𝑛.
It should be noted that memory occupied by initializing variables or calling functions in a loop is re-
leased when entering the next iteration, so it does not accumulate space, and the space complexity
remains𝑂(1):

^/ ^^= File: space_complexity.cpp ^^=

^* Function ^/
int func() {

^/ Perform some operations
return 0;
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}

^* Constant order ^/
void constant(int n) {

^/ Constants, variables, objects occupy O(1) space
const int a = 0;
int b = 0;
vector<int> nums(10000);
ListNode node(0);
^/ Variables in the loop occupy O(1) space
for (int i = 0; i < n; i^+) {

int c = 0;
}
^/ Functions in the loop occupy O(1) space
for (int i = 0; i < n; i^+) {

func();
}

}

2. Linear Order𝑂(𝑛)

Linear order is common in arrays, linked lists, stacks, queues, etc., where the number of elements is
proportional to 𝑛:

^/ ^^= File: space_complexity.cpp ^^=

^* Linear order ^/
void linear(int n) {

^/ Array of length n uses O(n) space
vector<int> nums(n);
^/ A list of length n occupies O(n) space
vector<ListNode> nodes;
for (int i = 0; i < n; i^+) {

nodes.push_back(ListNode(i));
}
^/ A hash table of length n occupies O(n) space
unordered_map<int, string> map;
for (int i = 0; i < n; i^+) {

map[i] = to_string(i);
}

}

As shown in the following figure, the recursion depth of this function is 𝑛, meaning that there are 𝑛
unreturned linear_recur() functions existing simultaneously, using𝑂(𝑛) stack frame space:

^/ ^^= File: space_complexity.cpp ^^=

^* Linear order (recursive implementation) ^/
void linearRecur(int n) {

cout << "Recursion n = " << n << endl;
if (n ^= 1)

return;
linearRecur(n - 1);

}
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Figure 2-17 Linear order space complexity generated by recursive function

3. Quadratic Order𝑂(𝑛2)

Quadratic order is common in matrices and graphs, where the number of elements is quadratically
related to 𝑛:

^/ ^^= File: space_complexity.cpp ^^=

^* Exponential order ^/
void quadratic(int n) {

^/ 2D list uses O(n^2) space
vector<vector<int>> numMatrix;
for (int i = 0; i < n; i^+) {

vector<int> tmp;
for (int j = 0; j < n; j^+) {

tmp.push_back(0);
}
numMatrix.push_back(tmp);

}
}

As shown in the following figure, the recursion depth of this function is 𝑛, and an array is initialized in
each recursive function with lengths of 𝑛, 𝑛−1,…, 2, 1, with an average length of 𝑛/2, thus occupying
𝑂(𝑛2) space overall:

^/ ^^= File: space_complexity.cpp ^^=

^* Quadratic order (recursive implementation) ^/
int quadraticRecur(int n) {

if (n <= 0)
return 0;

vector<int> nums(n);
cout << "In recursion n = " << n << ", nums length = " << nums.size() << endl;



Chapter 2. Complexity Analysis www.hello-algo.com 51

return quadraticRecur(n - 1);
}

Figure 2-18 Quadratic order space complexity generated by recursive function

4. Exponential Order𝑂(2𝑛)

Exponential order is common in binary trees. Observe the following figure: a “full binary tree” with 𝑛
levels has 2𝑛 − 1 nodes, occupying𝑂(2𝑛) space:

^/ ^^= File: space_complexity.cpp ^^=

^* Driver Code ^/
TreeNode *buildTree(int n) {

if (n ^= 0)
return nullptr;

TreeNode *root = new TreeNode(0);
root->left = buildTree(n - 1);
root->right = buildTree(n - 1);
return root;

}
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Figure 2-19 Exponential order space complexity generated by full binary tree

5. Logarithmic Order𝑂(log𝑛)

Logarithmic order is common in divide-and-conquer algorithms. For example, merge sort: given an
input array of length 𝑛, each recursion divides the array in half from the midpoint, forming a recursion
tree of height log𝑛, using𝑂(log𝑛) stack frame space.
Another example is converting a number to a string. Given a positive integer 𝑛, it has ⌊log10 𝑛⌋ + 1
digits, i.e., the corresponding string length is ⌊log10 𝑛⌋+1, so the space complexity is𝑂(log10 𝑛+1) =
𝑂(log𝑛).

2.4.4 Trading Time for Space

Ideally, we hope that both the time complexity and space complexity of an algorithm can reach optimal.
However, in practice, optimizing both time complexity and space complexity simultaneously is usually
very difficult.

Reducing time complexity usually comes at the cost of increasing space complexity, and vice versa.
The approach of sacrificing memory space to improve algorithm execution speed is called “trading
space for time”; conversely, it is called “trading time for space”.

The choice of which approach depends on which aspect we value more. In most cases, time is more
precious than space, so “trading space for time” is usually the more common strategy. Of course, when
the data volume is very large, controlling space complexity is also very important.
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2.5 Summary

1. Key Review

Algorithm Efficiency Assessment

• Time efficiency and space efficiency are the two primary evaluation metrics for measuring algo-
rithm performance.

• We can evaluate algorithm efficiency through actual testing, but it is difficult to eliminate the
influence of the testing environment, and it consumes substantial computational resources.

• Complexity analysis can eliminate the drawbacks of actual testing, with results applicable to all
running platforms, and it can reveal algorithm efficiency under different data scales.

Time Complexity

• Time complexity is used to measure the trend of algorithm runtime as data volume increases.
It can effectively evaluate algorithm efficiency, but may fail in certain situations, such as when
the input data volume is small or when time complexities are identical, making it impossible to
precisely compare algorithm efficiency.

• Worst-case time complexity is represented using Big𝑂 notation, corresponding to the asymptotic
upper bound of a function, reflecting the growth level of the number of operations 𝑇 (𝑛) as 𝑛
approaches positive infinity.

• Deriving time complexity involves two steps: first, counting the number of operations, then de-
termining the asymptotic upper bound.

• Common time complexities arranged from low to high include𝑂(1),𝑂(log𝑛),𝑂(𝑛),𝑂(𝑛 log𝑛),
𝑂(𝑛2),𝑂(2𝑛), and𝑂(𝑛!).

• The time complexity of some algorithms is not fixed, but rather depends on the distribution of
input data. Time complexity is divided into worst-case, best-case, and average-case time com-
plexity. Best-case time complexity is rarely used because input data generally needs to satisfy
strict conditions to achieve the best case.

• Average time complexity reflects the algorithm’s runtime efficiency under random data input,
and is closest to the algorithm’s performance in practical applications. Calculating average time
complexity requires statistical analysis of input data distribution and the combined mathematical
expectation.

Space Complexity

• Space complexity serves a similar purpose to time complexity, used to measure the trend of algo-
rithm memory usage as data volume increases.

• The memory space related to algorithm execution can be divided into input space, temporary
space, and output space. Typically, input space is not included in space complexity calculations.
Temporary space can be divided into temporary data, stack frame space, and instruction space,
where stack frame space usually affects space complexity only in recursive functions.

• We typically only focus on worst-case space complexity, which is the space complexity of an
algorithm under worst-case input data and worst-case runtime.

• Common space complexities arranged from low to high include𝑂(1),𝑂(log𝑛),𝑂(𝑛),𝑂(𝑛2), and
𝑂(2𝑛).
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2. Q & A

Q: Is the space complexity of tail recursion𝑂(1)?
Theoretically, the space complexity of tail recursive functions can be optimized to 𝑂(1). However,
most programming languages (such as Java, Python, C++, Go, C#, etc.) do not support automatic tail
recursion optimization, so the space complexity is generally considered to be𝑂(𝑛).
Q: What is the difference between the terms function and method?

A function can be executed independently, with all parameters passed explicitly. Amethod is associated
with an object, is implicitly passed to the object that invokes it, and can operate on data contained in
class instances.

The following examples use several common programming languages for illustration.

• C is a procedural programming language without object-oriented concepts, so it only has func-
tions. However, we can simulate object-oriented programming by creating structures (struct),
and functions associated with structures are equivalent to methods in other programming lan-
guages.

• Java and C# are object-oriented programming languages where code blocks (methods) are typi-
cally part of a class. Static methods behave like functions because they are bound to the class and
cannot access specific instance variables.

• C++ and Python support both procedural programming (functions) and object-oriented program-
ming (methods).

Q: Does the diagram for “common space complexity types” reflect the absolute size of occupied
space?

No, the diagram shows space complexity, which reflects growth trends rather than the absolute size of
occupied space.

Assuming 𝑛 = 8, you might find that the values of each curve do not correspond to the functions.
This is because each curve contains a constant term used to compress the value range into a visually
comfortable range.

In practice, because we generally do not know what the “constant term” complexity of each method is,
we usually cannot select the optimal solution for 𝑛 = 8 based on complexity alone. But for 𝑛 = 85, the
choice is straightforward, as the growth trend already dominates.

Q: Are there situations where algorithms are designed to sacrifice time (or space) based on actual use
cases?

In practical applications, most situations choose to sacrifice space for time. For example, with database
indexes, we typically choose to build B+ trees or hash indexes, occupying substantial memory space in
exchange for efficient queries of𝑂(log𝑛) or even𝑂(1).
In scenarios where space resources are precious, time may be sacrificed for space. For example, in
embedded development, device memory is precious, and engineers may forgo using hash tables and
choose to use array sequential search to save memory usage, at the cost of slower searches.
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Chapter 3. Data Structures

Abstract
Data structure is like a sturdy and diverse framework.
It provides a blueprint for the orderly organization of data, upon which algorithms come to life.
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3.1 Classification of Data Structures

Common data structures include arrays, linked lists, stacks, queues, hash tables, trees, heaps, and
graphs. They can be classified from two dimensions: “logical structure” and “physical structure”.

3.1.1 Logical Structure: Linear and Non-Linear

Logical structure reveals the logical relationships between data elements. In arrays and linked lists,
data is arranged in a certain order, embodying the linear relationship between data; while in trees, data
is arranged hierarchically from top to bottom, showing the derived relationship between “ancestors”
and “descendants”; graphs are composed of nodes and edges, reflecting complex network relation-
ships.

As shown in Figure 3-1, logical structures can be divided into two major categories: “linear” and “non-
linear”. Linear structures are more intuitive, indicating that data is linearly arranged in logical relation-
ships; non-linear structures are the opposite, arranged non-linearly.

• Linear data structures: Arrays, linked lists, stacks, queues, hash tables, where elements have a
one-to-one sequential relationship.

• Non-linear data structures: Trees, heaps, graphs, hash tables.

Non-linear data structures can be further divided into tree structures and network structures.

• Tree structures: Trees, heaps, hash tables, where elements have a one-to-many relationship.
• Network structures: Graphs, where elements have a many-to-many relationship.

Figure 3-1 Linear and non-linear data structures
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3.1.2 Physical Structure: Contiguous and Dispersed

When an algorithm program runs, the data being processed is mainly stored in memory. Figure 3-2
shows a computer memory stick, where each black square contains a memory space. We can imagine
memory as a huge Excel spreadsheet, where each cell can store a certain amount of data.

The system accesses data at the target location through memory addresses. As shown in Figure 3-2,
the computer assigns a number to each cell in the spreadsheet according to specific rules, ensuring
that each memory space has a unique memory address. With these addresses, the program can access
data in memory.

Figure 3-2 Memory stick, memory space, memory address

Tip
It is worth noting that comparingmemory to an Excel spreadsheet is a simplified analogy. The ac-
tual working mechanism of memory is quite complex, involving concepts such as address space,
memory management, cache mechanisms, virtual memory, and physical memory.

Memory is a shared resource for all programs. When a block of memory is occupied by a program, it
usually cannot be used by other programs at the same time. Therefore, in the design of data structures
and algorithms, memory resources are an important consideration. For example, the peak memory
occupied by an algorithm should not exceed the remaining free memory of the system; if there is a
lack of contiguous large memory blocks, then the data structure chosen must be able to be stored in
dispersed memory spaces.

As shown in Figure 3-3, physical structure reflects the way data is stored in computer memory, and
can be divided into contiguous space storage (arrays) and dispersed space storage (linked lists). The
two physical structures exhibit complementary characteristics in terms of time efficiency and space
efficiency.
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Figure 3-3 Contiguous space storage and dispersed space storage

It is worth noting that all data structures are implemented based on arrays, linked lists, or a combi-
nation of both. For example, stacks and queues can be implemented using either arrays or linked lists;
while the implementation of hash tables may include both arrays and linked lists.

• Can be implemented based on arrays: Stacks, queues, hash tables, trees, heaps, graphs, matrices,
tensors (arrays with dimensions≥ 3), etc.

• Can be implemented based on linked lists: Stacks, queues, hash tables, trees, heaps, graphs, etc.

After initialization, linked lists can still adjust their length during program execution, so they are also
called “dynamic data structures”. After initialization, the length of arrays cannot be changed, so they
are also called “static data structures”. It is worth noting that arrays can achieve length changes by
reallocating memory, thus possessing a certain degree of “dynamism”.

Tip
If you find it difficult to understand physical structure, it is recommended to read the next chap-
ter first, and then review this section.

3.2 Basic Data Types

When we talk about data in computers, we think of various forms such as text, images, videos, audio,
3D models, and more. Although these data are organized in different ways, they are all composed of
various basic data types.

Basic data types are types that the CPU can directly operate on, and they are directly used in algo-
rithms, mainly including the following.

• Integer types byte, short, int, long.
• Floating-point types float, double, used to represent decimal numbers.
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• Character type char, used to represent letters, punctuation marks, and even emojis in various
languages.

• Boolean type bool, used to represent “yes” and “no” judgments.

Basic data types are stored in binary form in computers. One binary bit is 1 bit. In most modern
operating systems, 1 byte consists of 8 bits.
The range of values for basic data types depends on the size of the space they occupy. Below is an
example using Java.

• Integer type byte occupies 1 byte = 8 bits, and can represent 28 numbers.
• Integer type int occupies 4 bytes = 32 bits, and can represent 232 numbers.

The following table lists the space occupied, value ranges, and default values of various basic data types
in Java. You don’t need to memorize this table; a general understanding is sufficient, and you can refer
to it when needed.

Table 3-1 Space occupied and value ranges of basic data types

Type Symbol
Space
Occupied Minimum Value Maximum Value Default Value

Integer byte 1 byte −27 (−128) 27 − 1 (127) 0
short 2 bytes −215 215 − 1 0
int 4 bytes −231 231 − 1 0
long 8 bytes −263 263 − 1 0

Float float 4 bytes 1.175 × 10−38 3.403 × 1038 0.0f
double 8 bytes 2.225 × 10−308 1.798 × 10308 0.0

Character char 2 bytes 0 216 − 1 0
Boolean bool 1 byte false true false

Please note that the above table is specific to Java’s basic data types. Each programming language has
its own data type definitions, and their space occupied, value ranges, and default values may vary.

• In Python, the integer type int can be of any size, limited only by available memory; the floating-
point type float is double-precision 64-bit; there is no char type, a single character is actually a
string str of length 1.

• C and C++ do not explicitly specify the size of basic data types, which varies by implementation
and platform. The above table follows the LP64 data model, which is used in Unix 64-bit operating
systems including Linux and macOS.

• The size of character char is 1 byte in C and C++, and in most programming languages it depends
on the specific character encoding method, as detailed in the “Character Encoding” section.

• Even though representing a boolean value requires only 1 bit (0 or 1), it is usually stored as 1 byte in
memory. This is becausemodern computer CPUs typically use 1 byte as theminimum addressable
memory unit.

https://en.cppreference.com/w/cpp/language/types#Properties


Chapter 3. Data Structures www.hello-algo.com 60

So, what is the relationship between basic data types and data structures? We know that data structures
are ways of organizing and storing data in computers. The subject of this statement is “structure”, not
“data”.

If we want to represent “a row of numbers”, we naturally think of using an array. This is because the
linear structure of an array can represent the adjacency and order relationships of numbers, but the
content stored—whether integer int, floating-point float, or character char—is unrelated to the “data
structure”.

In other words, basic data types provide the “content type” of data, while data structures provide the
“organization method” of data. For example, in the following code, we use the same data structure
(array) to store and represent different basic data types, including int, float, char, bool, etc.

^/ Initialize arrays using various basic data types
int numbers[5];
float decimals[5];
char characters[5];
bool bools[5];

3.3 Number Encoding *

Tip
In this book, chapters marked with an asterisk * are optional readings. If you are short on time
or find them challenging, you may skip these initially and return to them after completing the
essential chapters.

3.3.1 Sign-Magnitude, 1’s Complement, and 2’s Complement

In the table from the previous section, we found that all integer types can represent one more negative
number than positive numbers. For example, the byte range is [−128, 127]. This phenomenon is coun-
terintuitive, and its underlying reason involves knowledge of sign-magnitude, 1’s complement, and 2’s
complement.

First, it should be noted that numbers are stored in computers in the form of “2’s complement”. Before
analyzing the reasons for this, let’s first define these three concepts.

• Sign-magnitude: We treat the highest bit of the binary representation of a number as the sign
bit, where 0 represents a positive number and 1 represents a negative number, and the remaining
bits represent the value of the number.

• 1’s complement: The 1’s complement of a positive number is the same as its sign-magnitude. For
a negative number, the 1’s complement is obtained by inverting all bits except the sign bit of its
sign-magnitude.

• 2’s complement: The 2’s complement of a positive number is the same as its sign-magnitude. For
a negative number, the 2’s complement is obtained by adding 1 to its 1’s complement.
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Figure 3-4 shows the conversion methods among sign-magnitude, 1’s complement, and 2’s comple-
ment.

Figure 3-4 Conversions among sign-magnitude, 1’s complement, and 2’s complement

Sign-magnitude, although the most intuitive, has some limitations. On one hand, the sign-magnitude
of negative numbers cannot be directly used in operations. For example, calculating 1 + (−2) in
sign-magnitude yields−3, which is clearly incorrect.

1 + (−2)
→ 0000 0001 + 1000 0010
= 1000 0011
→ −3

To solve this problem, computers introduced 1’s complement. If we first convert sign-magnitude to 1’s
complement and calculate 1+(−2) in 1’s complement, then convert the result back to sign-magnitude,
we can obtain the correct result of−1.

1 + (−2)
→ 0000 0001 (Sign-magnitude)+ 1000 0010 (Sign-magnitude)
= 0000 0001 (1’s complement)+ 1111 1101 (1’s complement)
= 1111 1110 (1’s complement)
= 1000 0001 (Sign-magnitude)
→ −1

On the other hand, the sign-magnitude of the number zero has two representations,+0 and−0. This
means that the number zero corresponds to two different binary encodings, which may cause ambigu-
ity. For example, in conditional judgments, if we don’t distinguish between positive zero and negative
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zero, it may lead to incorrect judgment results. If we want to handle the ambiguity of positive and neg-
ative zero, we need to introduce additional judgment operations, which may reduce the computational
efficiency of the computer.

+0 → 0000 0000
−0 → 1000 0000

Like sign-magnitude, 1’s complement also has the problem of positive and negative zero ambiguity.
Therefore, computers further introduced 2’s complement. Let’s first observe the conversion process
of negative zero from sign-magnitude to 1’s complement to 2’s complement:

−0 → 1000 0000 (Sign-magnitude)
= 1111 1111 (1’s complement)

= 1 0000 0000 (2’s complement)

Adding 1 to the 1’s complement of negative zero produces a carry, but since the byte type has a length
of only 8 bits, the 1 that overflows to the 9th bit is discarded. That is to say, the 2’s complement of
negative zero is 0000 0000, which is the same as the 2’s complement of positive zero. This means that
in 2’s complement representation, there is only one zero, and the positive and negative zero ambiguity
is thus resolved.

One last question remains: the range of the byte type is [−128, 127], and how is the extra negative
number −128 obtained? We notice that all integers in the interval [−127, +127] have corresponding
sign-magnitude, 1’s complement, and 2’s complement, and sign-magnitude and 2’s complement can be
converted to each other.

However, the 2’s complement 1000 0000 is an exception, and it does not have a corresponding sign-
magnitude. According to the conversion method, we get that the sign-magnitude of this 2’s comple-
ment is 0000 0000. This is clearly contradictory because this sign-magnitude represents the number
0, and its 2’s complement should be itself. The computer specifies that this special 2’s complement
1000 0000 represents −128. In fact, the result of calculating (−1) + (−127) in 2’s complement is
−128.

(−127) + (−1)
→ 1111 1111 (Sign-magnitude)+ 1000 0001 (Sign-magnitude)
= 1000 0000 (1’s complement)+ 1111 1110 (1’s complement)
= 1000 0001 (2’s complement)+ 1111 1111 (2’s complement)
= 1000 0000 (2’s complement)
→ −128

You may have noticed that all the above calculations are addition operations. This hints at an impor-
tant fact: the hardware circuits inside computers are mainly designed based on addition operations.
This is because addition operations are simpler to implement in hardware compared to other opera-
tions (such as multiplication, division, and subtraction), easier to parallelize, and have faster operation
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speeds.

Please note that this does not mean that computers can only perform addition. By combining addition
with some basic logical operations, computers can implement various othermathematical operations.
For example, calculating the subtraction 𝑎 − 𝑏 can be converted to calculating the addition 𝑎 + (−𝑏);
calculating multiplication and division can be converted to calculating multiple additions or subtrac-
tions.

Now we can summarize the reasons why computers use 2’s complement: based on 2’s complement
representation, computers can use the same circuits and operations to handle the addition of positive
and negative numbers, without the need to design special hardware circuits to handle subtraction, and
without the need to specially handle the ambiguity problem of positive and negative zero. This greatly
simplifies hardware design and improves operational efficiency.

The design of 2’s complement is very ingenious. Due to space limitations, we will stop here. Interested
readers are encouraged to explore further.

3.3.2 Floating-Point Number Encoding

Careful readers may have noticed: int and float have the same length, both are 4 bytes, but why does
float have a much larger range than int? This is very counterintuitive because it stands to reason that
float needs to represent decimals, so the range should be smaller.

In fact, this is because floating-point number float uses a different representation method. Let’s
denote a 32-bit binary number as:

𝑏31𝑏30𝑏29 … 𝑏2𝑏1𝑏0

According to the IEEE 754 standard, a 32-bit float consists of the following three parts.

• Sign bit S: occupies 1 bit, corresponding to 𝑏31.
• Exponent bit E: occupies 8 bits, corresponding to 𝑏30𝑏29 …𝑏23.
• Fraction bit N: occupies 23 bits, corresponding to 𝑏22𝑏21 …𝑏0.

The calculation method for the value corresponding to the binary float is:

val = (−1)𝑏31 × 2(𝑏30𝑏29…𝑏23)2−127 × (1.𝑏22𝑏21 …𝑏0)2

Converted to decimal, the calculation formula is:

val = (−1)S × 2E−127 × (1 + N)

The range of each component is:
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S ∈{0, 1}, E ∈ {1, 2, … , 254}

(1 + N) =(1 +
23
∑
𝑖=1

𝑏23−𝑖2−𝑖) ⊂ [1, 2 − 2−23]

Figure 3-5 Calculation example of float under IEEE 754 standard

Observing Figure 3-5, given example data S = 0, E = 124, N = 2−2 + 2−3 = 0.375, we have:

val = (−1)0 × 2124−127 × (1 + 0.375) = 0.171875

Now we can answer the initial question: the representation of float includes an exponent bit, result-
ing in a range far greater than int. According to the above calculation, the maximum positive number
that float can represent is 2254−127 × (2 − 2−23) ≈ 3.4 × 1038, and the minimum negative number
can be obtained by switching the sign bit.

Although floating-point number float expands the range, its side effect is sacrificing precision. The
integer type int uses all 32 bits to represent numbers, and the numbers are evenly distributed; however,
due to the existence of the exponent bit, the larger the value of floating-point number float, the larger
the difference between two adjacent numbers tends to be.

As shown in Table 3-2, exponent bits E = 0 and E = 255 have special meanings, used to represent
zero, infinity, NaN, etc.

Table 3-2 Meaning of exponent bits

Exponent
Bit E Fraction Bit N = 0 Fraction Bit N ≠ 0 Calculation Formula

0 ±0 Subnormal Number (−1)S × 2−126 × (0.N)
1, 2, … , 254 Normal Number Normal Number (−1)S × 2(E−127) × (1.N)
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Exponent
Bit E Fraction Bit N = 0 Fraction Bit N ≠ 0 Calculation Formula

255 ±∞ NaN

It is worth noting that subnormal numbers significantly improve the precision of floating-point num-
bers. The smallest positive normal number is 2−126, and the smallest positive subnormal number is
2−126 × 2−23.

Double-precision double also uses a representation method similar to float, which will not be elabo-
rated here.

3.4 Character Encoding *

In computers, all data is stored in binary form, and character char is no exception. To represent char-
acters, we need to establish a “character set” that defines a one-to-one correspondence between each
character and binary numbers. With a character set, computers can convert binary numbers to char-
acters by looking up the table.

3.4.1 Ascii Character Set

ASCII code is the earliest character set, with the full name American Standard Code for Information
Interchange. It uses 7 binary bits (the lower 7 bits of one byte) to represent a character, and can rep-
resent a maximum of 128 different characters. As shown in Figure 3-6, ASCII code includes uppercase
and lowercase English letters, numbers 0 ~ 9, some punctuation marks, and some control characters
(such as newline and tab).

Figure 3-6 ASCII code
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However, ASCII code can only represent English. With the globalization of computers, a character set
called EASCII that can represent more languages emerged. It expands from the 7-bit basis of ASCII to
8 bits, and can represent 256 different characters.

Worldwide, a batch of EASCII character sets suitable for different regions have appeared successively.
The first 128 characters of these character sets are unified as ASCII code, and the last 128 characters
are defined differently to adapt to the needs of different languages.

3.4.2 Gbk Character Set

Later, people found that EASCII code still cannot meet the character quantity requirements of many
languages. For example, there are nearly one hundred thousand Chinese characters, and several thou-
sand are used daily. In 1980, the China National Standardization Administration released the GB2312
character set, which included 6,763 Chinese characters, basically meeting the needs for computer pro-
cessing of Chinese characters.

However, GB2312 cannot handle some rare characters and traditional Chinese characters. The GBK
character set is an extension based on GB2312, which includes a total of 21,886 Chinese characters. In
the GBK encoding scheme, ASCII characters are represented using one byte, and Chinese characters
are represented using two bytes.

3.4.3 Unicode Character Set

With the vigorous development of computer technology, character sets and encoding standards flour-
ished, which brought many problems. On the one hand, these character sets generally only define
characters for specific languages and cannot work normally inmultilingual environments. On the other
hand, multiple character set standards exist for the same language, and if two computers use different
encoding standards, garbled characters will appear during information transmission.

Researchers of that era thought: If a sufficiently complete character set is released that includes all
languages and symbols in the world, wouldn’t it be possible to solve cross-language environment and
garbled character problems? Driven by this idea, a large and comprehensive character set, Unicode,
was born.

Unicode is called “统一码” (Unified Code) in Chinese and can theoretically accommodate over one mil-
lion characters. It is committed to including characters from around the world into a unified character
set, providing a universal character set to handle and display various language texts, reducing garbled
character problems caused by different encoding standards.

Since its release in 1991, Unicode has continuously expanded to include new languages and characters.
As of September 2022, Unicode has included 149,186 characters, including characters, symbols, and
even emojis from various languages. In the vast Unicode character set, commonly used characters
occupy 2 bytes, and some rare characters occupy 3 bytes or even 4 bytes.

Unicode is a universal character set that essentially assigns a number (called a “code point”) to each
character, but it does not specify how to store these character code points in computers. We can’t
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help but ask: when Unicode code points of multiple lengths appear simultaneously in a text, how does
the system parse the characters? For example, given an encoding with a length of 2 bytes, how does
the system determine whether it is one 2-byte character or two 1-byte characters?

For the above problem, a straightforward solution is to store all characters as equal-length encodings.
As shown in Figure 3-7, each character in “Hello” occupies 1 byte, and each character in “算法” (algorithm)
occupies 2 bytes. We can encode all characters in “Hello算法” as 2 bytes in length by padding the high
bits with 0. In this way, the system can parse one character every 2 bytes and restore the content of
this phrase.

Figure 3-7 Unicode encoding example

However, ASCII code has already proven to us that encoding English only requires 1 byte. If the above
scheme is adopted, the size of English text will be twice that under ASCII encoding, which is very
wasteful of memory space. Therefore, we need a more efficient Unicode encoding method.

3.4.4 Utf-8 Encoding

Currently, UTF-8 has become the most widely used Unicode encoding method internationally. It is a
variable-length encoding that uses 1 to 4 bytes to represent a character, depending on the complexity
of the character. ASCII characters only require 1 byte, Latin andGreek letters require 2 bytes, commonly
used Chinese characters require 3 bytes, and some other rare characters require 4 bytes.

The encoding rules of UTF-8 are not complicated and can be divided into the following two cases.

• For 1-byte characters, set the highest bit to 0, and set the remaining 7 bits to the Unicode code
point. It is worth noting that ASCII characters occupy the first 128 code points in the Unicode
character set. That is to say, UTF-8 encoding is backward compatible with ASCII code. This
means we can use UTF-8 to parse very old ASCII code text.

• For characters with a length of 𝑛 bytes (where 𝑛 > 1), set the highest 𝑛 bits of the first byte to 1,
and set the (𝑛 + 1)-th bit to 0; starting from the second byte, set the highest 2 bits of each byte
to 10; use all remaining bits to fill in the Unicode code point of the character.
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Figure 3-8 shows the UTF-8 encoding corresponding to “Hello算法”. It can be observed that since the
highest 𝑛 bits are all set to 1, the system can parse the length of the character as 𝑛 by reading the
number of highest bits that are 1.
But why set the highest 2 bits of all other bytes to 10? In fact, this 10 can serve as a check symbol.
Assuming the system starts parsing text from an incorrect byte, the 10 at the beginning of the byte can
help the system quickly determine an anomaly.

The reason for using 10 as a check symbol is that under UTF-8 encoding rules, it is impossible for a
character’s highest two bits to be 10. This conclusion can be proven by contradiction: assuming the
highest two bits of a character are 10, it means the length of the character is 1, corresponding to ASCII
code. However, the highest bit of ASCII code should be 0, which contradicts the assumption.

Figure 3-8 UTF-8 encoding example

In addition to UTF-8, common encoding methods also include the following two.

• UTF-16 encoding: Uses 2 or 4 bytes to represent a character. All ASCII characters and commonly
used non-English characters are represented with 2 bytes; a few characters need to use 4 bytes.
For 2-byte characters, UTF-16 encoding is equal to the Unicode code point.

• UTF-32 encoding: Every character uses 4 bytes. This means that UTF-32 takes up more space
than UTF-8 and UTF-16, especially for text with a high proportion of ASCII characters.

From the perspective of storage space occupation, using UTF-8 to represent English characters is very
efficient because it only requires 1 byte; using UTF-16 encoding for some non-English characters (such
as Chinese) will be more efficient because it only requires 2 bytes, while UTF-8 may require 3 bytes.

From a compatibility perspective, UTF-8 has the best universality, andmany tools and libraries support
UTF-8 first.



Chapter 3. Data Structures www.hello-algo.com 69

3.4.5 Character Encoding in Programming Languages

For most past programming languages, strings during program execution use fixed-length encodings
such as UTF-16 or UTF-32. Under fixed-length encoding, we can treat strings as arrays for processing,
and this approach has the following advantages.

• Random access: UTF-16 encoded strings can be easily accessed randomly. UTF-8 is a variable-
length encoding. To find the 𝑖-th character, we need to traverse from the beginning of the string
to the 𝑖-th character, which requires𝑂(𝑛) time.

• Character counting: Similar to random access, calculating the length of a UTF-16 encoded string
is also an 𝑂(1) operation. However, calculating the length of a UTF-8 encoded string requires
traversing the entire string.

• String operations: Many string operations (such as splitting, joining, inserting, deleting, etc.) on
UTF-16 encoded strings are easier to perform. Performing these operations on UTF-8 encoded
strings usually requires additional calculations to ensure that invalid UTF-8 encoding is not gen-
erated.

In fact, the design of character encoding schemes for programming languages is a very interesting topic
involving many factors.

• Java’s String type uses UTF-16 encoding, with each character occupying 2 bytes. This is because
at the beginning of Java language design, people believed that 16 bits were sufficient to represent
all possible characters. However, this was an incorrect judgment. Later, the Unicode specification
expanded beyond 16 bits, so characters in Java may now be represented by a pair of 16-bit values
(called “surrogate pairs”).

• The strings of JavaScript and TypeScript use UTF-16 encoding for reasons similar to Java. When
Netscape first introduced the JavaScript language in 1995, Unicode was still in its early stages
of development, and at that time, using 16-bit encoding was sufficient to represent all Unicode
characters.

• C# uses UTF-16 encodingmainly because the .NET platformwas designed byMicrosoft, andmany
of Microsoft’s technologies (including the Windows operating system) extensively use UTF-16 en-
coding.

Due to the underestimation of character quantities by the above programming languages, they had
to adopt the “surrogate pair” method to represent Unicode characters with lengths exceeding 16 bits.
This is a reluctant compromise. On the one hand, in strings containing surrogate pairs, one character
may occupy 2 bytes or 4 bytes, thus losing the advantage of fixed-length encoding. On the other hand,
handling surrogate pairs requires additional code, which increases the complexity and difficulty of
debugging in programming.

For the above reasons, some programming languages have proposed different encoding schemes.

• Python’s str uses Unicode encoding and adopts a flexible string representation where the stored
character length depends on the largest Unicode code point in the string. If all characters in the
string are ASCII characters, each character occupies 1 byte; if there are characters exceeding the
ASCII range but all within the Basic Multilingual Plane (BMP), each character occupies 2 bytes; if
there are characters exceeding the BMP, each character occupies 4 bytes.
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• Go language’s string type uses UTF-8 encoding internally. Go language also provides the rune
type, which is used to represent a single Unicode code point.

• Rust language’s str and String types use UTF-8 encoding internally. Rust also provides the char
type for representing a single Unicode code point.

It should be noted that the above discussion is about how strings are stored in programming languages,
which is different from how strings are stored in files or transmitted over networks. In file storage or
network transmission, we usually encode strings into UTF-8 format to achieve optimal compatibility
and space efficiency.

3.5 Summary

1. Key Review

• Data structures can be classified from two perspectives: logical structure and physical structure.
Logical structure describes the logical relationships between data elements, while physical struc-
ture describes how data is stored in computer memory.

• Common logical structures include linear, tree, and network structures. We typically classify
data structures as linear (arrays, linked lists, stacks, queues) and non-linear (trees, graphs, heaps)
based on their logical structure. The implementation of hash tables may involve both linear and
non-linear data structures.

• When a program runs, data is stored in computer memory. Eachmemory space has a correspond-
ing memory address, and the program accesses data through these memory addresses.

• Physical structures are primarily divided into contiguous space storage (arrays) and dispersed
space storage (linked lists). All data structures are implemented using arrays, linked lists, or a
combination of both.

• Basic data types in computers include integers byte, short, int, long, floating-point numbers
float, double, characters char, and booleans bool. Their value ranges depend on the size of
space they occupy and their representation method.

• Sign-magnitude, 1’s complement, and 2’s complement are threemethods for encoding numbers in
computers, and they can be converted into each other. Themost significant bit of sign-magnitude
is the sign bit, and the remaining bits represent the value of the number.

• Integers are stored in computers in 2’s complement form. Under 2’s complement representation,
computers can treat the addition of positive and negative numbers uniformly, without needing to
design special hardware circuits for subtraction, and there is no ambiguity of positive and negative
zero.

• The encoding of floating-point numbers consists of 1 sign bit, 8 exponent bits, and 23 fraction
bits. Due to the exponent bits, the range of floating-point numbers is much larger than that of
integers, at the cost of sacrificing precision.

• ASCII is the earliest English character set, with a length of 1 byte, containing a total of 127 charac-
ters. GBK is a commonly used Chinese character set, containing over 20,000 Chinese characters.
Unicode is committed to providing a complete character set standard, collecting characters from
various languages around the world, thereby solving the garbled text problem caused by inconsis-
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tent character encoding methods.
• UTF-8 is the most popular Unicode encoding method, with excellent universality. It is a variable-
length encoding method with good scalability, effectively improving storage space efficiency.
UTF-16 and UTF-32 are fixed-length encoding methods. When encoding Chinese characters,
UTF-16 occupies less space than UTF-8. Programming languages such as Java and C# use UTF-16
encoding by default.

2. Q & A

Q: Why do hash tables contain both linear and non-linear data structures?

The underlying structure of a hash table is an array. To resolve hash collisions, we may use “chaining”
(discussed in the subsequent “Hash Collision” section): each bucket in the array points to a linked list,
which may be converted to a tree (usually a red-black tree) when the list length exceeds a certain
threshold.

From a storage perspective, the underlying structure of a hash table is an array, where each bucket
slot may contain a value, a linked list, or a tree. Therefore, hash tables may contain both linear data
structures (arrays, linked lists) and non-linear data structures (trees).

Q: Is the length of the char type 1 byte?

The length of the char type is determined by the encoding method used by the programming lan-
guage. For example, Java, JavaScript, TypeScript, and C# all use UTF-16 encoding (to store Unicode
code points), so the char type has a length of 2 bytes.

Q: Is there ambiguity in referring to array-based data structures as “static data structures”? Stacks can
also perform “dynamic” operations such as push and pop.

Stacks can indeed implement dynamic data operations, but the data structure is still “static” (fixed
length). Although array-based data structures can dynamically add or remove elements, their capacity
is fixed. If the data volume exceeds the pre-allocated size, a new larger array needs to be created, and
the contents of the old array must be copied to the new array.

Q: When constructing a stack (queue), its size is not specified. Why are they “static data structures”?

In high-level programming languages, we do not need to manually specify the initial capacity of a stack
(queue); this work is automatically completed within the class. For example, the initial capacity of Java’s
ArrayList is typically 10. Additionally, the expansion operation is also automatically implemented. See
the subsequent “List” section for details.

Q: The method of converting sign-magnitude to 2’s complement is “first negate then add 1”. So convert-
ing 2’s complement to sign-magnitude should be the inverse operation “first subtract 1 then negate”.
However, 2’s complement can also be converted to sign-magnitude through “first negate then add 1”.
Why is this?

This is because the mutual conversion between sign-magnitude and 2’s complement is actually the
process of computing the “complement”. Let us first define the complement: assuming 𝑎+𝑏 = 𝑐, then
we say that 𝑎 is the complement of 𝑏 to 𝑐, and conversely, 𝑏 is the complement of 𝑎 to 𝑐.
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Given an 𝑛 = 4 bit binary number 0010, if we treat this number as sign-magnitude (ignoring the sign
bit), then its 2’s complement can be obtained through “first negate then add 1”:

0010 → 1101 → 1110

We find that the sum of sign-magnitude and 2’s complement is 0010 + 1110 = 10000, which means
the 2’s complement 1110 is the “complement” of sign-magnitude 0010 to 10000. This means the above
“first negate then add 1” is actually the process of computing the complement to 10000.
So, what is the “complement” of 2’s complement 1110 to 10000? We can still use “first negate then add
1” to obtain it:

1110 → 0001 → 0010

In other words, sign-magnitude and 2’s complement are each other’s “complement” to 10000, so “sign-
magnitude to 2’s complement” and “2’s complement to sign-magnitude” can be implemented using the
same operation (first negate then add 1).

Of course, we can also use the inverse operation to find the sign-magnitude of 2’s complement 1110,
that is, “first subtract 1 then negate”:

1110 → 1101 → 0010

In summary, both “first negate then add 1” and “first subtract 1 then negate” are computing the comple-
ment to 10000, and they are equivalent.
Essentially, the “negate” operation is actually finding the complement to 1111 (because sign-magnitude + 1's complement = 1111
always holds); and adding 1 to the 1’s complement yields the 2’s complement, which is the complement
to 10000.
The above uses 𝑛 = 4 as an example, and it can be generalized to binary numbers of any number of
bits.
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Chapter 4. Array and Linked List

Abstract
The world of data structures is like a solid brick wall.
Array bricks are neatly arranged, tightly packed one by one. Linked list bricks are scattered
everywhere, with connecting vines freely weaving through the gaps between bricks.
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4.1 Array

An array is a linear data structure that stores elements of the same type in contiguous memory space.
The position of an element in the array is called the element’s index. Figure 4-1 illustrates the main
concepts and storage method of arrays.

Figure 4-1 Array definition and storage method

4.1.1 Common Array Operations

1. Initializing Arrays

We can choose between two array initialization methods based on our needs: without initial values
or with given initial values. When no initial values are specified, most programming languages will
initialize array elements to 0:

^/ ^^= File: array.cpp ^^=

^* Initialize array ^/
^/ Stored on stack
int arr[5];
int nums[5] = { 1, 3, 2, 5, 4 };
^/ Stored on heap (requires manual memory release)
int* arr1 = new int[5];
int* nums1 = new int[5] { 1, 3, 2, 5, 4 };

2. Accessing Elements

Array elements are stored in contiguous memory space, which means calculating the memory address
of array elements is very easy. Given the array’s memory address (the memory address of the first
element) and an element’s index, we can use the formula shown in Figure 4-2 to calculate the element’s
memory address and directly access that element.
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Figure 4-2 Memory address calculation for array elements

Observing Figure 4-2, we find that the first element of an array has an index of 0, which may seem
counterintuitive since counting from 1 would be more natural. However, from the perspective of the
address calculation formula, an index is essentially an offset from the memory address. The address
offset of the first element is 0, so it is reasonable for its index to be 0.
Accessing elements in an array is highly efficient; we can randomly access any element in the array in
𝑂(1) time.

^/ ^^= File: array.cpp ^^=

^* Random access to element ^/
int randomAccess(int *nums, int size) {

^/ Randomly select a number from interval [0, size)
int randomIndex = rand() % size;
^/ Retrieve and return the random element
int randomNum = nums[randomIndex];
return randomNum;

}

3. Inserting Elements

Array elements are stored “tightly adjacent” in memory, with no space between them to store any ad-
ditional data. As shown in Figure 4-3, if we want to insert an element in the middle of an array, we
need to shift all elements after that position backward by one position, and then assign the value to
that index.
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Figure 4-3 Example of inserting an element into an array

It is worth noting that since the length of an array is fixed, inserting an element will inevitably cause
the element at the end of the array to be “lost”. We will leave the solution to this problem for discussion
in the “List” chapter.

^/ ^^= File: array.cpp ^^=

^* Insert element num at index index in the array ^/
void insert(int *nums, int size, int num, int index) {

^/ Move all elements at and after index index backward by one position
for (int i = size - 1; i > index; i--) {

nums[i] = nums[i - 1];
}
^/ Assign num to the element at index index
nums[index] = num;

}

4. Removing Elements

Similarly, as shown in Figure 4-4, to delete the element at index 𝑖, we need to shift all elements after
index 𝑖 forward by one position.
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Figure 4-4 Example of removing an element from an array

Note that after the deletion is complete, the original last element becomes “meaningless”, so we do not
need to specifically modify it.

^/ ^^= File: array.cpp ^^=

^* Remove the element at index index ^/
void remove(int *nums, int size, int index) {

^/ Move all elements after index index forward by one position
for (int i = index; i < size - 1; i^+) {

nums[i] = nums[i + 1];
}

}

Overall, array insertion and deletion operations have the following drawbacks:

• High time complexity: The average time complexity for both insertion and deletion in arrays is
𝑂(𝑛), where 𝑛 is the length of the array.

• Loss of elements: Since the length of an array is immutable, after inserting an element, elements
that exceed the array’s length will be lost.

• Memory waste: We can initialize a relatively long array and only use the front portion, so that
when inserting data, the lost elements at the end are “meaningless”, but this causes somememory
space to be wasted.

5. Traversing Arrays

In most programming languages, we can traverse an array either by index or by directly iterating
through each element in the array:
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^/ ^^= File: array.cpp ^^=

^* Traverse array ^/
void traverse(int *nums, int size) {

int count = 0;
^/ Traverse array by index
for (int i = 0; i < size; i^+) {

count += nums[i];
}

}

6. Finding Elements

Finding a specified element in an array requires traversing the array and checking whether the element
value matches in each iteration; if it matches, output the corresponding index.

Since an array is a linear data structure, the above search operation is called a “linear search”.

^/ ^^= File: array.cpp ^^=

^* Find the specified element in the array ^/
int find(int *nums, int size, int target) {

for (int i = 0; i < size; i^+) {
if (nums[i] ^= target)

return i;
}
return -1;

}

7. Expanding Arrays

In complex system environments, programs cannot guarantee that the memory space after an array is
available, making it unsafe to expand the array’s capacity. Therefore, in most programming languages,
the length of an array is immutable.

If we want to expand an array, we need to create a new, larger array and then copy the original array
elements to the new array one by one. This is an𝑂(𝑛) operation, which is very time-consuming when
the array is large. The code is shown below:

^/ ^^= File: array.cpp ^^=

^* Extend array length ^/
int *extend(int *nums, int size, int enlarge) {

^/ Initialize an array with extended length
int *res = new int[size + enlarge];
^/ Copy all elements from the original array to the new array
for (int i = 0; i < size; i^+) {

res[i] = nums[i];
}
^/ Free memory
delete[] nums;
^/ Return the extended new array
return res;
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}

4.1.2 Advantages and Limitations of Arrays

Arrays are stored in contiguous memory space with elements of the same type. This approach contains
rich prior information that the system can use to optimize the efficiency of data structure operations.

• High space efficiency: Arrays allocate contiguous memory blocks for data without additional
structural overhead.

• Support for random access: Arrays allow accessing any element in𝑂(1) time.
• Cache locality: When accessing array elements, the computer not only loads the element but
also caches the surrounding data, thereby leveraging the cache to improve the execution speed
of subsequent operations.

Contiguous space storage is a double-edged sword with the following limitations:

• Low insertion and deletion efficiency: When an array has many elements, insertion and deletion
operations require shifting a large number of elements.

• Immutable length: After an array is initialized, its length is fixed. Expanding the array requires
copying all data to a new array, which is very costly.

• Space waste: If the allocated size of an array exceeds what is actually needed, the extra space is
wasted.

4.1.3 Typical Applications of Arrays

Arrays are a fundamental and common data structure, frequently used in various algorithms and for
implementing various complex data structures.

• Random access: If we want to randomly sample some items, we can use an array to store them
and generate a random sequence to implement random sampling based on indices.

• Sorting and searching: Arrays are themost commonly used data structure for sorting and search-
ing algorithms. Quick sort, merge sort, binary search, and others are primarily performed on
arrays.

• Lookup tables: Whenwe need to quickly find an element or its corresponding relationship, we can
use an array as a lookup table. For example, if we want to implement a mapping from characters
to ASCII codes, we can use the ASCII code value of a character as an index, with the corresponding
element stored at that position in the array.

• Machine learning: Neural networks make extensive use of linear algebra operations between
vectors, matrices, and tensors, all of which are constructed in the form of arrays. Arrays are the
most commonly used data structure in neural network programming.

• Data structure implementation: Arrays can be used to implement stacks, queues, hash tables,
heaps, graphs, and other data structures. For example, the adjacency matrix representation of a
graph is essentially a two-dimensional array.
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4.2 Linked List

Memory space is a shared resource for all programs. In a complex system runtime environment, avail-
able memory space may be scattered throughout the memory. We know that the memory space for
storing an array must be contiguous, and when the array is very large, the memory may not be able to
provide such a large contiguous space. This is where the flexibility advantage of linked lists becomes
apparent.

A linked list is a linear data structure in which each element is a node object, and the nodes are con-
nected through “references”. A reference records thememory address of the next node, through which
the next node can be accessed from the current node.

The design of linked lists allows nodes to be stored scattered throughout thememory, and theirmemory
addresses do not need to be contiguous.

Figure 4-5 Linked list definition and storage method

Observing Figure 4-5, the basic unit of a linked list is a node object. Each node contains two pieces of
data: the node’s “value” and a “reference” to the next node.

• The first node of a linked list is called the “head node”, and the last node is called the “tail node”.
• The tail node points to “null”, which is denoted as null, nullptr, and None in Java, C++, and Python,
respectively.

• In languages that support pointers, such as C, C++, Go, and Rust, the aforementioned “reference”
should be replaced with “pointer”.

As shown in the following code, a linked list node ListNode contains not only a value but also an ad-
ditional reference (pointer). Therefore, linked lists occupy more memory space than arrays when
storing the same amount of data.

^* Linked list node structure ^/
struct ListNode {
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int val; ^/ Node value
ListNode *next; ^/ Pointer to the next node
ListNode(int x) : val(x), next(nullptr) {} ^/ Constructor

};

4.2.1 Common Linked List Operations

1. Initializing a Linked List

Building a linked list involves two steps: first, initializing each node object; second, constructing the ref-
erence relationships between nodes. Once initialization is complete, we can traverse all nodes starting
from the head node of the linked list through the reference next.

^/ ^^= File: linked_list.cpp ^^=

^* Initialize linked list 1 -> 3 -> 2 -> 5 -> 4 ^/
^/ Initialize each node
ListNode* n0 = new ListNode(1);
ListNode* n1 = new ListNode(3);
ListNode* n2 = new ListNode(2);
ListNode* n3 = new ListNode(5);
ListNode* n4 = new ListNode(4);
^/ Build references between nodes
n0->next = n1;
n1->next = n2;
n2->next = n3;
n3->next = n4;

An array is a single variable; for example, an array nums contains elements nums[0], nums[1], etc. A
linked list, however, is composed of multiple independent node objects. We typically use the head
node as the reference to the linked list; for example, the linked list in the above code can be referred
to as linked list n0.

2. Inserting a Node

Inserting a node in a linked list is very easy. As shown in Figure 4-6, suppose we want to insert a new
node P between two adjacent nodes n0 and n1. We only need to change two node references (pointers),
with a time complexity of𝑂(1).
In contrast, the time complexity of inserting an element in an array is 𝑂(𝑛), which is inefficient when
dealing with large amounts of data.
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Figure 4-6 Example of inserting a node into a linked list

^/ ^^= File: linked_list.cpp ^^=

^* Insert node P after node n0 in the linked list ^/
void insert(ListNode *n0, ListNode *P) {

ListNode *n1 = n0->next;
P->next = n1;
n0->next = P;

}

3. Removing a Node

As shown in Figure 4-7, removing a node in a linked list is also very convenient. We only need to change
one node’s reference (pointer).

Note that although node P still points to n1 after the deletion operation is complete, the linked list can
no longer access P when traversing, which means P no longer belongs to this linked list.
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Figure 4-7 Removing a node from a linked list

^/ ^^= File: linked_list.cpp ^^=

^* Remove the first node after node n0 in the linked list ^/
void remove(ListNode *n0) {

if (n0->next ^= nullptr)
return;

^/ n0 -> P -> n1
ListNode *P = n0->next;
ListNode *n1 = P->next;
n0->next = n1;
^/ Free memory
delete P;

}

4. Accessing a Node

Accessing nodes in a linked list is less efficient. As mentioned in the previous section, we can access
any element in an array in𝑂(1) time. This is not the case with linked lists. The program needs to start
from the head node and traverse backward one by one until the target node is found. That is, accessing
the 𝑖-th node in a linked list requires 𝑖 − 1 iterations, with a time complexity of𝑂(𝑛).

^/ ^^= File: linked_list.cpp ^^=

^* Access the node at index index in the linked list ^/
ListNode *access(ListNode *head, int index) {

for (int i = 0; i < index; i^+) {
if (head ^= nullptr)

return nullptr;
head = head->next;

}
return head;

}
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5. Finding a Node

Traverse the linked list to find a node with value target, and output the index of that node in the linked
list. This process is also a linear search. The code is shown below:

^/ ^^= File: linked_list.cpp ^^=

^* Find the first node with value target in the linked list ^/
int find(ListNode *head, int target) {

int index = 0;
while (head ^= nullptr) {

if (head->val ^= target)
return index;

head = head->next;
index^+;

}
return -1;

}

4.2.2 Arrays vs. Linked Lists

Table 4-1 summarizes the characteristics of arrays and linked lists and compares their operational effi-
ciencies. Since they employ two opposite storage strategies, their various properties and operational
efficiencies also exhibit contrasting characteristics.

Table 4-1 Comparison of array and linked list efficiencies

Array Linked List

Storage method Contiguous memory space Scattered memory space

Capacity expansion Immutable length Flexible expansion

Memory efficiency Elements occupy less memory, but space may be
wasted

Elements occupy more
memory

Accessing an element 𝑂(1) 𝑂(𝑛)
Adding an element 𝑂(𝑛) 𝑂(1)
Removing an element 𝑂(𝑛) 𝑂(1)

4.2.3 Common Types of Linked Lists

As shown in Figure 4-8, there are three common types of linked lists:

• Singly linked list: This is the ordinary linked list introduced earlier. The nodes of a singly linked
list contain a value and a reference to the next node. We call the first node the head node and the
last node the tail node, which points to null None.
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• Circular linked list: If we make the tail node of a singly linked list point to the head node (con-
necting the tail to the head), we get a circular linked list. In a circular linked list, any node can be
viewed as the head node.

• Doubly linked list: Compared to a singly linked list, a doubly linked list records references in both
directions. The node definition of a doubly linked list includes references to both the successor
node (next node) and the predecessor node (previous node). Compared to a singly linked list, a
doubly linked list is more flexible and can traverse the linked list in both directions, but it also
requires more memory space.

^* Doubly linked list node structure ^/
struct ListNode {

int val; ^/ Node value
ListNode *next; ^/ Pointer to the successor node
ListNode *prev; ^/ Pointer to the predecessor node
ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} ^/ Constructor

};

Figure 4-8 Common types of linked lists

4.2.4 Typical Applications of Linked Lists

Singly linked lists are commonly used to implement stacks, queues, hash tables, and graphs.

• Stacks and queues: When insertion and deletion operations both occur at one end of the linked
list, it exhibits last-in-first-out characteristics, corresponding to a stack. When insertion opera-
tions occur at one end of the linked list and deletion operations occur at the other end, it exhibits
first-in-first-out characteristics, corresponding to a queue.

• Hash tables: Separate chaining is one of the mainstream solutions for resolving hash collisions.
In this approach, all colliding elements are placed in a linked list.

• Graphs: An adjacency list is a common way to represent a graph, where each vertex in the graph
is associated with a linked list, and each element in the linked list represents another vertex con-
nected to that vertex.
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Doubly linked lists are commonly used in scenarios where quick access to the previous and next ele-
ments is needed.

• Advanced data structures: For example, in red-black trees and B-trees, we need to access the
parent node of a node, which can be achieved by saving a reference to the parent node in the
node, similar to a doubly linked list.

• Browser history: In web browsers, when a user clicks the forward or backward button, the
browser needs to know the previous and next web pages the user visited. The characteristics of
doubly linked lists make this operation simple.

• LRU algorithm: In cache eviction (LRU) algorithms, we need to quickly find the least recently used
data and support quick addition and deletion of nodes. Using a doubly linked list is very suitable
for this.

Circular linked lists are commonly used in scenarios that require periodic operations, such as operating
system resource scheduling.

• Round-robin scheduling algorithm: In operating systems, round-robin scheduling is a common
CPU scheduling algorithm that needs to cycle through a set of processes. Each process is assigned
a time slice, and when the time slice expires, the CPU switches to the next process. This cyclic
operation can be implemented using a circular linked list.

• Data buffers: In some data buffer implementations, circular linked lists may also be used. For
example, in audio and video players, the data stream may be divided into multiple buffer blocks
and placed in a circular linked list to achieve seamless playback.

4.3 List

A list is an abstract data structure concept that represents an ordered collection of elements, sup-
porting operations such as element access, modification, insertion, deletion, and traversal, without
requiring users to consider capacity limitations. Lists can be implemented based on linked lists or
arrays.

• A linked list can naturally be viewed as a list, supporting element insertion, deletion, search, and
modification operations, and can flexibly expand dynamically.

• An array also supports element insertion, deletion, search, and modification, but since its length
is immutable, it can only be viewed as a list with length limitations.

When implementing lists using arrays, the immutable length property reduces the practicality of the
list. This is because we usually cannot determine in advance how much data we need to store, making
it difficult to choose an appropriate list length. If the length is too small, it may fail to meet usage
requirements; if the length is too large, it will waste memory space.

To solve this problem, we can use a dynamic array to implement a list. It inherits all the advantages of
arrays and can dynamically expand during program execution.

In fact, the lists provided in the standard libraries of many programming languages are implemented
based on dynamic arrays, such as list in Python, ArrayList in Java, vector in C++, and List in C#. In
the following discussion, we will treat “list” and “dynamic array” as equivalent concepts.
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4.3.1 Common List Operations

1. Initialize a List

We typically use two initialization methods: “without initial values” and “with initial values”:

^/ ^^= File: list.cpp ^^=

^* Initialize a list ^/
^/ Note that vector in C^+ is equivalent to nums as described in this article
^/ Without initial values
vector<int> nums1;
^/ With initial values
vector<int> nums = { 1, 3, 2, 5, 4 };

2. Access Elements

Since a list is essentially an array, we can access and update elements in 𝑂(1) time complexity, which
is very efficient.

^/ ^^= File: list.cpp ^^=

^* Access an element ^/
int num = nums[1]; ^/ Access element at index 1

^* Update an element ^/
nums[1] = 0; ^/ Update element at index 1 to 0

3. Insert and Delete Elements

Compared to arrays, lists can freely add and delete elements. Adding an element at the end of a list has
a time complexity of𝑂(1), but inserting and deleting elements still have the same efficiency as arrays,
with a time complexity of𝑂(𝑛).

^/ ^^= File: list.cpp ^^=

^* Clear the list ^/
nums.clear();

^* Add elements at the end ^/
nums.push_back(1);
nums.push_back(3);
nums.push_back(2);
nums.push_back(5);
nums.push_back(4);

^* Insert an element in the middle ^/
nums.insert(nums.begin() + 3, 6); ^/ Insert number 6 at index 3

^* Delete an element ^/
nums.erase(nums.begin() + 3); ^/ Delete element at index 3
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4. Traverse a List

Like arrays, lists can be traversed by index or by directly iterating through elements.

^/ ^^= File: list.cpp ^^=

^* Traverse the list by index ^/
int count = 0;
for (int i = 0; i < nums.size(); i^+) {

count += nums[i];
}

^* Traverse list elements directly ^/
count = 0;
for (int num : nums) {

count += num;
}

5. Concatenate Lists

Given a new list nums1, we can concatenate it to the end of the original list.

^/ ^^= File: list.cpp ^^=

^* Concatenate two lists ^/
vector<int> nums1 = { 6, 8, 7, 10, 9 };
^/ Concatenate list nums1 to the end of nums
nums.insert(nums.end(), nums1.begin(), nums1.end());

6. Sort a List

After sorting a list, we can use “binary search” and “two-pointer” algorithms, which are frequently
tested in array algorithm problems.

^/ ^^= File: list.cpp ^^=

^* Sort a list ^/
sort(nums.begin(), nums.end()); ^/ After sorting, list elements are arranged from smallest to

largest↪

4.3.2 List Implementation

Many programming languages have built-in lists, such as Java, C++, and Python. Their implementations
are quite complex, and the parameters are carefully considered, such as initial capacity, expansion
multiples, and so on. Interested readers can consult the source code to learn more.

To deepen our understanding of how lists work, we attempt to implement a simple list with three key
design considerations:
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• Initial capacity: Select a reasonable initial capacity for the underlying array. In this example, we
choose 10 as the initial capacity.

• Size tracking: Declare a variable size to record the current number of elements in the list and
update it in real-time as elements are inserted and deleted. Based on this variable, we can locate
the end of the list and determine whether expansion is needed.

• Expansion mechanism: When the list capacity is full upon inserting an element, we need to ex-
pand. We create a larger array based on the expansion multiple and then move all elements from
the current array to the new array in order. In this example, we specify that the array should be
expanded to 2 times its previous size each time.

^/ ^^= File: my_list.cpp ^^=

^* List class ^/
class MyList {

private:
int *arr; ^/ Array (stores list elements)
int arrCapacity = 10; ^/ List capacity
int arrSize = 0; ^/ List length (current number of elements)
int extendRatio = 2; ^/ Multiple by which the list capacity is extended each time

public:
^* Constructor ^/
MyList() {

arr = new int[arrCapacity];
}

^* Destructor ^/
~MyList() {

delete[] arr;
}

^* Get list length (current number of elements)^/
int size() {

return arrSize;
}

^* Get list capacity ^/
int capacity() {

return arrCapacity;
}

^* Update element ^/
int get(int index) {

^/ If the index is out of bounds, throw an exception, as below
if (index < 0 ^| index >= size())

throw out_of_range("Index out of bounds");
return arr[index];

}

^* Add elements at the end ^/
void set(int index, int num) {

if (index < 0 ^| index >= size())
throw out_of_range("Index out of bounds");

arr[index] = num;
}

^* Direct traversal of list elements ^/
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void add(int num) {
^/ When the number of elements exceeds capacity, trigger the extension mechanism
if (size() ^= capacity())

extendCapacity();
arr[size()] = num;
^/ Update the number of elements
arrSize^+;

}

^* Sort list ^/
void insert(int index, int num) {

if (index < 0 ^| index >= size())
throw out_of_range("Index out of bounds");

^/ When the number of elements exceeds capacity, trigger the extension mechanism
if (size() ^= capacity())

extendCapacity();
^/ Move all elements after index index forward by one position
for (int j = size() - 1; j >= index; j--) {

arr[j + 1] = arr[j];
}
arr[index] = num;
^/ Update the number of elements
arrSize^+;

}

^* Remove element ^/
int remove(int index) {

if (index < 0 ^| index >= size())
throw out_of_range("Index out of bounds");

int num = arr[index];
^/ Create a new array with length _extend_ratio times the original array, and copy the

original array to the new array↪
for (int j = index; j < size() - 1; j^+) {

arr[j] = arr[j + 1];
}
^/ Update the number of elements
arrSize--;
^/ Return the removed element
return num;

}

^* Driver Code ^/
void extendCapacity() {

^/ Create a new array with length extendRatio times the original array
int newCapacity = capacity() * extendRatio;
int *tmp = arr;
arr = new int[newCapacity];
^/ Copy all elements from the original array to the new array
for (int i = 0; i < size(); i^+) {

arr[i] = tmp[i];
}
^/ Free memory
delete[] tmp;
arrCapacity = newCapacity;

}

^* Convert list to Vector for printing ^/
vector<int> toVector() {

^/ Elements enqueue
vector<int> vec(size());
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for (int i = 0; i < size(); i^+) {
vec[i] = arr[i];

}
return vec;

}
};

4.4 Random-Access Memory and Cache *

In the first two sections of this chapter, we explored arrays and linked lists, two fundamental and im-
portant data structures that represent “contiguous storage” and “distributed storage” as two physical
structures, respectively.

In fact, physical structure largely determines the efficiency with which programs utilize memory and
cache, which in turn affects the overall performance of algorithmic programs.

4.4.1 Computer Storage Devices

Computers include three types of storage devices: hard disk, random-accessmemory (RAM), and cache
memory. The following table shows their different roles and performance characteristics in a computer
system.

Table 4-2 Computer Storage Devices

Hard Disk RAM Cache

Purpose Long-term storage of data,
including operating systems,
programs, and files

Temporary storage of
currently running
programs and data being
processed

Storage of frequently accessed
data and instructions to reduce
CPU’s accesses to memory

Volatility Data is not lost after power-off Data is lost after power-off Data is lost after power-off

Capacity Large, on the order of terabytes
(TB)

Small, on the order of
gigabytes (GB)

Very small, on the order of
megabytes (MB)

Speed Slow, hundreds to thousands of
MB/s

Fast, tens of GB/s Very fast, tens to hundreds of
GB/s

Cost
(USD/GB)

Inexpensive, fractions of a dollar
to a few dollars per GB

Expensive, tens to
hundreds of dollars per GB

Very expensive, priced as part of
the CPU package

We can imagine the computer storage system as a pyramid structure as shown in the diagram below.
Storage devices closer to the top of the pyramid are faster, have smaller capacity, and are more ex-
pensive. This multi-layered design is not by accident, but rather the result of careful consideration by
computer scientists and engineers.
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• Hard disk cannot be easily replaced by RAM. First, data in memory is lost after power-off, making
it unsuitable for long-term data storage. Second, memory is tens of times more expensive than
hard disk, which makes it difficult to popularize in the consumer market.

• Cache cannot simultaneously achieve large capacity and high speed. As the capacity of L1, L2,
and L3 caches increases, their physical size becomes larger, and the physical distance between
them and the CPU core increases, resulting in longer data transmission time and higher element
access latency. With current technology, the multi-layered cache structure represents the best
balance point between capacity, speed, and cost.

Figure 4-9 Computer Storage System

Tip
The storage hierarchy of computers embodies a delicate balance among speed, capacity, and
cost. In fact, such trade-offs are common across all industrial fields, requiring us to find the
optimal balance point between different advantages and constraints.

In summary, hard disk is used for long-term storage of large amounts of data, RAM is used for tem-
porary storage of data being processed during program execution, and cache is used for storage of
frequently accessed data and instructions, to improve program execution efficiency. The three work
together to ensure efficient operation of the computer system.

As shown in the diagram below, during program execution, data is read from the hard disk into RAM
for CPU computation. Cache can be viewed as part of the CPU, it intelligently loads data from RAM,
providing the CPU with high-speed data reading, thereby significantly improving program execution
efficiency and reducing reliance on slower RAM.
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Figure 4-10 Data Flow Among Hard Disk, RAM, and Cache

4.4.2 Memory Efficiency of Data Structures

In terms of memory space utilization, arrays and linked lists each have advantages and limitations.

On one hand,memory is limited, and the samememory cannot be shared bymultiple programs, so we
hope data structures can utilize space as efficiently as possible. Array elements are tightly packed and
do not require additional space to store references (pointers) between linked list nodes, thus having
higher space efficiency. However, arrays need to allocate sufficient contiguous memory space at once,
which may lead to memory waste, and array expansion requires additional time and space costs. In
comparison, linked lists perform dynamic memory allocation and deallocation on a “node” basis, pro-
viding greater flexibility.

On the other hand, during program execution, asmemory is repeatedly allocated and freed, the degree
of fragmentation of free memory becomes increasingly severe, leading to reduced memory utiliza-
tion efficiency. Arrays, due to their contiguous storage approach, are relatively less prone to memory
fragmentation. Conversely, linked list elements are distributed in storage, and frequent insertion and
deletion operations are more likely to cause memory fragmentation.

4.4.3 Cache Efficiency of Data Structures

Although cache hasmuch smaller space capacity thanmemory, it is much faster thanmemory and plays
a crucial role in program execution speed. Since cache capacity is limited and can only store a small
portion of frequently accessed data, when the CPU attempts to access data that is not in the cache, a
cache miss occurs, and the CPU must load the required data from the slower memory.

Clearly, the fewer “cache misses,” the higher the efficiency of CPU data reads and writes, and the
better the program performance. We call the proportion of data that the CPU successfully obtains
from the cache the cache hit rate, a metric typically used to measure cache efficiency.

To achieve the highest efficiency possible, cache employs the following data loading mechanisms.

• Cache lines: The cache does not store and load data on a byte-by-byte basis, but rather as cache
lines. Compared to byte-by-byte transmission, cache line transmission is more efficient.
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• Prefetching mechanism: The processor attempts to predict data access patterns (e.g., sequential
access, fixed-stride jumping access, etc.) and loads data into the cache according to specific
patterns, thereby improving hit rate.

• Spatial locality: If a piece of data is accessed, nearby data may also be accessed in the near future.
Therefore, when the cache loads a particular piece of data, it also loads nearby data to improve
hit rate.

• Temporal locality: If a piece of data is accessed, it is likely to be accessed again in the near future.
Cache leverages this principle by retaining recently accessed data to improve hit rate.

In fact, arrays and linked lists have different efficiencies in utilizing cache, manifested in the following
aspects.

• Space occupied: Linked list elements occupy more space than array elements, resulting in fewer
effective data in the cache.

• Cache lines: Linked list data are scattered throughout memory, while cache loads “by lines,” so
the proportion of invalid data loaded is higher.

• Prefetching mechanism: Arrays have more “predictable” data access patterns than linked lists,
making it easier for the system to guess which data will be loaded next.

• Spatial locality: Arrays are stored in centralized memory space, so data near loaded data is more
likely to be accessed soon.

Overall, arrays have higher cache hit rates, thus they usually outperform linked lists in operation
efficiency. This makes data structures implemented based on arrays more popular when solving algo-
rithmic problems.

It is important to note that high cache efficiency does notmean arrays are superior to linked lists in all
cases. In practical applications, which data structure to choose should be determined based on specific
requirements. For example, both arrays and linked lists can implement the “stack” data structure (which
will be discussed in detail in the next chapter), but they are suitable for different scenarios.

• When solving algorithm problems, we tend to prefer stack implementations based on arrays, be-
cause they provide higher operation efficiency and the ability of random access, at the cost of
needing to pre-allocate a certain amount of memory space for the array.

• If the data volume is very large, the dynamic nature is high, and the expected size of the stack is
difficult to estimate, then a stack implementation based on linked lists is more suitable. Linked
lists can distribute large amounts of data across different parts ofmemory and avoid the additional
overhead produced by array expansion.

4.5 Summary

1. Key Review

• Arrays and linked lists are two fundamental data structures, representing two different ways data
can be stored in computer memory: contiguous memory storage and scattered memory storage.
The characteristics of the two complement each other.
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• Arrays support random access and use less memory; however, inserting and deleting elements is
inefficient, and the length is immutable after initialization.

• Linked lists achieve efficient insertion and deletion of nodes by modifying references (pointers),
and can flexibly adjust length; however, node access is inefficient and memory consumption is
higher. Common linked list types include singly linked lists, circular linked lists, and doubly linked
lists.

• A list is an ordered collection of elements that supports insertion, deletion, search, and modifi-
cation, typically implemented based on dynamic arrays. It retains the advantages of arrays while
allowing flexible adjustment of length.

• The emergence of lists has greatly improved the practicality of arrays, but may result in some
wasted memory space.

• During program execution, data is primarily stored in memory. Arrays provide higher memory
space efficiency, while linked lists offer greater flexibility in memory usage.

• Caches provide fast data access to the CPU through mechanisms such as cache lines, prefetching,
and spatial and temporal locality, significantly improving program execution efficiency.

• Because arrays have higher cache hit rates, they are generally more efficient than linked lists.
When choosing a data structure, appropriate selection should be made based on specific require-
ments and scenarios.

2. Q & A

Q: Does storing an array on the stack versus on the heap affect time efficiency and space efficiency?

Arrays stored on the stack and on the heap are both stored in contiguous memory space, so data op-
eration efficiency is basically the same. However, the stack and heap have their own characteristics,
leading to the following differences.

1. Allocation and deallocation efficiency: The stack is a relatively small piece of memory, with allo-
cation automatically handled by the compiler; the heap is relatively larger and can be dynamically
allocated in code, more prone to fragmentation. Therefore, allocation and deallocation operations
on the heap are usually slower than on the stack.

2. Size limitations: Stackmemory is relatively small, and the heap size is generally limited by available
memory. Therefore, the heap is more suitable for storing large arrays.

3. Flexibility: The size of an array on the stack must be determined at compile time, while the size
of an array on the heap can be determined dynamically at runtime.

Q: Why do arrays require elements of the same type, while linked lists do not emphasize this require-
ment?

Linked lists are composed of nodes, with nodes connected through references (pointers), and each
node can store different types of data, such as int, double, string, object, etc.

In contrast, array elements must be of the same type, so that the corresponding element position can
be obtained by calculating the offset. For example, if an array contains both int and long types, with
individual elements occupying 4 bytes and 8 bytes respectively, then the following formula cannot be
used to calculate the offset, because the array contains two different “element lengths”.
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# Element Memory Address = Array Memory Address (first Element Memory address) + Element Length *
Element Index↪

Q: After deleting node P, do we need to set P.next to None?

It is not necessary to modify P.next. From the perspective of the linked list, traversing from the head
node to the tail node will no longer encounter P. This means that node P has been removed from the
linked list, and it doesn’t matter where node P points to at this time—it won’t affect the linked list.
From a data structures and algorithms perspective (problem-solving), not disconnecting the pointer
doesn’t matter as long as the program logic is correct. From the perspective of standard libraries,
disconnecting is safer and the logic is clearer. If not disconnected, assuming the deleted node is not
properly reclaimed, it may affect the memory reclamation of its successor nodes.

Q: In a linked list, the time complexity of insertion and deletion operations is 𝑂(1). However, both
insertion and deletion require𝑂(𝑛) time to find the element; why isn’t the time complexity𝑂(𝑛)?
If the element is first found and then deleted, the time complexity is indeed 𝑂(𝑛). However, the ad-
vantage of 𝑂(1) insertion and deletion in linked lists can be demonstrated in other applications. For
example, a deque is well-suited for linked list implementation, where we maintain pointer variables
always pointing to the head and tail nodes, with each insertion and deletion operation being𝑂(1).
Q: In the diagram “Linked List Definition and StorageMethods”, does the light blue pointer node occupy
a single memory address, or does it share equally with the node value?

This diagram is a qualitative representation; a quantitative representation requires analysis based on
the specific situation.

• Different types of node values occupy different amounts of space, such as int, long, double, and
instance objects, etc.

• The amount of memory space occupied by pointer variables depends on the operating system and
compilation environment used, usually 8 bytes or 4 bytes.

Q: Is appending an element at the end of a list always𝑂(1)?
If appending an element exceeds the list length, the list must first be expanded before adding. The
system allocates a new block of memory and moves all elements from the original list to it, in which
case the time complexity becomes𝑂(𝑛).
Q: “The emergence of lists has greatly improved the practicality of arrays, butmay result in somewasted
memory space”—does this space waste refer to the memory occupied by additional variables such as
capacity, length, and expansion factor?

This space waste mainly has two aspects: on one hand, lists typically set an initial length, which we
may not need to fully utilize; on the other hand, to prevent frequent expansion, expansion generally
multiplies by a coefficient, such as×1.5. As a result, therewill bemany empty positions thatwe typically
cannot completely fill.

Q: In Python, after initializing n = [1, 2, 3], the addresses of these 3 elements are contiguous, but
initializing m = [2, 1, 3] reveals that each element’s id is not continuous; rather, they are the same
as those in n. Since the addresses of these elements are not contiguous, is m still an array?
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If we replace list elements with linked list nodes n = [n1, n2, n3, n4, n5], usually these 5 node
objects are also scattered throughout memory. However, given a list index, we can still obtain the node
memory address in 𝑂(1) time, thereby accessing the corresponding node. This is because the array
stores references to nodes, not the nodes themselves.

Unlike many languages, numbers in Python are wrapped as objects, and lists store not the numbers
themselves, but references to the numbers. Therefore, we find that the same numbers in two arrays
have the same id, and the memory addresses of these numbers need not be contiguous.

Q: C++ STL has std^:list which has already implemented a doubly linked list, but it seems that some
algorithm books don’t use it directly. Is there a limitation?

On one hand, we often prefer to use arrays for implementing algorithms and only use linked lists when
necessary, mainly for two reasons.

• Space overhead: Since each element requires two additional pointers (one for the previous ele-
ment and one for the next element), std^:list typically consumesmore space than std^:vector.

• Cache unfriendliness: Since data is not stored contiguously, std^:list has lower cache utilization.
In general, std^:vector has better performance.

On the other hand, caseswhere linked lists are necessarymainly involve binary trees and graphs. Stacks
and queues usually use the stack and queue provided by the programming language, rather than linked
lists.

Q: Does the operation res = [[0]] * n create a 2D list where each [0] is independent?

No, they are not independent. In this 2D list, all the [0] are actually references to the same object. If
we modify one element, we will find that all corresponding elements change accordingly.

If we want each [0] in the 2D list to be independent, we can use res = [[0] for _ in range(n)] to
achieve this. The principle of this approach is to initialize 𝑛 independent [0] list objects.
Q: Does the operation res = [0] * n create a list where each integer 0 is independent?

In this list, all integer 0s are references to the same object. This is because Python uses a caching
mechanism for small integers (typically -5 to 256) tomaximize object reuse and improve performance.

Although they point to the same object, we can still independently modify each element in the list.
This is because Python integers are “immutable objects”. When we modify an element, we are actually
switching to a reference of another object, rather than changing the original object itself.

However, when list elements are “mutable objects” (such as lists, dictionaries, or class instances), mod-
ifying an element directly changes the object itself, and all elements referencing that object will have
the same change.
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Chapter 5. Stack and Queue

Abstract
Stacks are like stacking cats, while queues are like cats lining up.
They represent LIFO (Last In First Out) and FIFO (First In First Out) logic, respectively.
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5.1 Stack

A stack is a linear data structure that follows the Last In First Out (LIFO) logic.

We can compare a stack to a pile of plates on a table. If we specify that only one plate can be moved at
a time, then to get the bottom plate, we must first remove the plates above it one by one. If we replace
the plates with various types of elements (such as integers, characters, objects, etc.), we get the stack
data structure.

As shown in Figure 5-1, we call the top of the stacked elements the “top” and the bottom the “base.”
The operation of adding an element to the top is called “push,” and the operation of removing the top
element is called “pop.”

Figure 5-1 LIFO rule of stack

5.1.1 Common Stack Operations

The common operations on a stack are shown in Table 5-1. The specific method names depend on
the programming language used. Here, we use the common naming convention of push(), pop(), and
peek().

Table 5-1 Efficiency of Stack Operations

Method Description Time Complexity

push() Push element onto stack (add to top) 𝑂(1)
pop() Pop top element from stack 𝑂(1)
peek() Access top element 𝑂(1)
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Typically, we can directly use the built-in stack class provided by the programming language. However,
some languages may not provide a dedicated stack class. In these cases, we can use the language’s
“array” or “linked list” as a stack and ignore operations unrelated to the stack in the program logic.

^/ ^^= File: stack.cpp ^^=

^* Initialize stack ^/
stack<int> stack;

^* Push elements ^/
stack.push(1);
stack.push(3);
stack.push(2);
stack.push(5);
stack.push(4);

^* Access top element ^/
int top = stack.top();

^* Pop element ^/
stack.pop(); ^/ No return value

^* Get stack length ^/
int size = stack.size();

^* Check if empty ^/
bool empty = stack.empty();

5.1.2 Stack Implementation

To gain a deeper understanding of how a stack operates, let’s try implementing a stack class ourselves.

A stack follows the LIFO principle, so we can only add or remove elements at the top. However, both
arrays and linked lists allow adding and removing elements at any position. Therefore, a stack can be
viewed as a restricted array or linked list. In other words, we can “shield” some irrelevant operations
of arrays or linked lists so that their external logic conforms to the characteristics of a stack.

1. Linked List Implementation

When implementing a stack using a linked list, we can treat the head node of the linked list as the top
of the stack and the tail node as the base.

As shown in Figure 5-2, for the push operation, we simply insert an element at the head of the linked
list. This node insertion method is called the “head insertion method.” For the pop operation, we just
need to remove the head node from the linked list.
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Figure 5-2 Push and pop operations in linked list implementation of stack

Below is sample code for implementing a stack based on a linked list:

^/ ^^= File: linkedlist_stack.cpp ^^=

^* Stack based on linked list implementation ^/
class LinkedListStack {

private:
ListNode *stackTop; ^/ Use head node as stack top
int stkSize; ^/ Stack length

public:
LinkedListStack() {

stackTop = nullptr;
stkSize = 0;

}

~LinkedListStack() {
^/ Traverse linked list to delete nodes and free memory
freeMemoryLinkedList(stackTop);

}

^* Get the length of the stack ^/
int size() {

return stkSize;
}

^* Check if the stack is empty ^/
bool isEmpty() {

return size() ^= 0;
}

^* Push ^/
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void push(int num) {
ListNode *node = new ListNode(num);
node->next = stackTop;
stackTop = node;
stkSize^+;

}

^* Pop ^/
int pop() {

int num = top();
ListNode *tmp = stackTop;
stackTop = stackTop->next;
^/ Free memory
delete tmp;
stkSize--;
return num;

}

^* Return list for printing ^/
int top() {

if (isEmpty())
throw out_of_range("Stack is empty");

return stackTop->val;
}

^* Convert List to Array and return ^/
vector<int> toVector() {

ListNode *node = stackTop;
vector<int> res(size());
for (int i = res.size() - 1; i >= 0; i--) {

res[i] = node->val;
node = node->next;

}
return res;

}
};

2. Array Implementation

When implementing a stack using an array, we can treat the end of the array as the top of the stack. As
shown in Figure 5-3, push and pop operations correspond to adding and removing elements at the end
of the array, both with a time complexity of𝑂(1).
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Figure 5-3 Push and pop operations in array implementation of stack

Since elements pushed onto the stack may increase continuously, we can use a dynamic array, which
eliminates the need to handle array expansion ourselves. Here is the sample code:

^/ ^^= File: array_stack.cpp ^^=

^* Stack based on array implementation ^/
class ArrayStack {

private:
vector<int> stack;

public:
^* Get the length of the stack ^/
int size() {

return stack.size();
}

^* Check if the stack is empty ^/
bool isEmpty() {

return stack.size() ^= 0;
}

^* Push ^/
void push(int num) {

stack.push_back(num);
}

^* Pop ^/
int pop() {

int num = top();
stack.pop_back();
return num;

}

^* Return list for printing ^/
int top() {

if (isEmpty())
throw out_of_range("Stack is empty");

return stack.back();
}

^* Return Vector ^/
vector<int> toVector() {

return stack;
}

};
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5.1.3 Comparison of the Two Implementations

Supported Operations

Both implementations support all operations defined by the stack. The array implementation addition-
ally supports random access, but this goes beyond the stack definition and is generally not used.

Time Efficiency

In the array-based implementation, both push and pop operations occur in pre-allocated contiguous
memory, which has good cache locality and is therefore more efficient. However, if pushing exceeds
the array capacity, it triggers an expansion mechanism, causing the time complexity of that particular
push operation to become𝑂(𝑛).
In the linked list-based implementation, list expansion is very flexible, and there is no issue of reduced
efficiency due to array expansion. However, the push operation requires initializing a node object and
modifying pointers, so it is relatively less efficient. Nevertheless, if the pushed elements are already
node objects, the initialization step can be omitted, thereby improving efficiency.

In summary, when the elements pushed and popped are basic data types such as int or double, we can
draw the following conclusions:

• The array-based stack implementation has reduced efficiency when expansion is triggered, but
since expansion is an infrequent operation, the average efficiency is higher.

• The linked list-based stack implementation can provide more stable efficiency performance.

Space Efficiency

When initializing a list, the system allocates an “initial capacity” that may exceed the actual need. Addi-
tionally, the expansion mechanism typically expands at a specific ratio (e.g., 2x), and the capacity after
expansion may also exceed actual needs. Therefore, the array-based stack implementation may cause
some space wastage.

However, since linked list nodes need to store additional pointers, the space occupied by linked list
nodes is relatively large.

In summary, we cannot simply determine which implementation is more memory-efficient and need
to analyze the specific situation.

5.1.4 Typical Applications of Stack

• Back and forward in browsers, undo and redo in software. Every time we open a new webpage,
the browser pushes the previous page onto the stack, allowing us to return to the previous page
via the back operation. The back operation is essentially performing a pop. To support both back
and forward, two stacks are needed to work together.

• Program memory management. Each time a function is called, the system adds a stack frame to
the top of the stack to record the function’s context information. During recursion, the downward
recursive phase continuously performs push operations, while the upward backtracking phase
continuously performs pop operations.
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5.2 Queue

A queue is a linear data structure that follows the First In First Out (FIFO) rule. As the name suggests,
a queue simulates the phenomenon of lining up, where newcomers continuously join the end of the
queue, while people at the front of the queue leave one by one.

As shown in Figure 5-4, we call the front of the queue the “front” and the end the “rear.” The operation
of adding an element to the rear is called “enqueue,” and the operation of removing the front element
is called “dequeue.”

Figure 5-4 FIFO rule of queue

5.2.1 Common Queue Operations

The common operations on a queue are shown in Table 5-2. Note that method names may vary across
different programming languages. We adopt the same naming convention as for stacks here.

Table 5-2 Efficiency of Queue Operations

Method Description Time Complexity

push() Enqueue element, add element to rear 𝑂(1)
pop() Dequeue front element 𝑂(1)
peek() Access front element 𝑂(1)

We can directly use the ready-made queue classes in programming languages:
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^/ ^^= File: queue.cpp ^^=

^* Initialize queue ^/
queue<int> queue;

^* Enqueue elements ^/
queue.push(1);
queue.push(3);
queue.push(2);
queue.push(5);
queue.push(4);

^* Access front element ^/
int front = queue.front();

^* Dequeue element ^/
queue.pop();

^* Get queue length ^/
int size = queue.size();

^* Check if queue is empty ^/
bool empty = queue.empty();

5.2.2 Queue Implementation

To implement a queue, we need a data structure that allows adding elements at one end and removing
elements at the other end. Both linked lists and arrays meet this requirement.

1. Linked List Implementation

As shown in Figure 5-5, we can treat the “head node” and “tail node” of a linked list as the “front” and
“rear” of the queue, respectively, with the rule that nodes can only be added at the rear and removed
from the front.
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Figure 5-5 Enqueue and dequeue operations in linked list implementation of queue

Below is the code for implementing a queue using a linked list:

^/ ^^= File: linkedlist_queue.cpp ^^=

^* Queue based on linked list implementation ^/
class LinkedListQueue {

private:
ListNode *front, *rear; ^/ Head node front, tail node rear
int queSize;

public:
LinkedListQueue() {

front = nullptr;
rear = nullptr;
queSize = 0;

}

~LinkedListQueue() {
^/ Traverse linked list to delete nodes and free memory
freeMemoryLinkedList(front);

}

^* Get the length of the queue ^/
int size() {

return queSize;
}

^* Check if the queue is empty ^/
bool isEmpty() {

return queSize ^= 0;
}

^* Enqueue ^/
void push(int num) {

^/ Add num after the tail node
ListNode *node = new ListNode(num);
^/ If the queue is empty, make both front and rear point to the node
if (front ^= nullptr) {

front = node;
rear = node;

}
^/ If the queue is not empty, add the node after the tail node
else {

rear->next = node;
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rear = node;
}
queSize^+;

}

^* Dequeue ^/
int pop() {

int num = peek();
^/ Delete head node
ListNode *tmp = front;
front = front->next;
^/ Free memory
delete tmp;
queSize--;
return num;

}

^* Return list for printing ^/
int peek() {

if (size() ^= 0)
throw out_of_range("Queue is empty");

return front->val;
}

^* Convert linked list to Vector and return ^/
vector<int> toVector() {

ListNode *node = front;
vector<int> res(size());
for (int i = 0; i < res.size(); i^+) {

res[i] = node->val;
node = node->next;

}
return res;

}
};

2. Array Implementation

Deleting the first element in an array has a time complexity of 𝑂(𝑛), which would make the dequeue
operation inefficient. However, we can use the following clever method to avoid this problem.

We can use a variable front to point to the index of the front element and maintain a variable size to
record the queue length. We define rear = front + size, which calculates the position right after
the rear element.

Based on this design, the valid interval containing elements in the array is [front, rear - 1]. The
implementation methods for various operations are shown in Figure 5-6:

• Enqueue operation: Assign the input element to the rear index and increase size by 1.
• Dequeue operation: Simply increase front by 1 and decrease size by 1.

As you can see, both enqueue and dequeue operations require only one operation, with a time com-
plexity of𝑂(1).
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Figure 5-6 Enqueue and dequeue operations in array implementation of queue

Youmay notice a problem: as we continuously enqueue and dequeue, both front and rearmove to the
right. When they reach the end of the array, they cannot continue moving. To solve this problem, we
can treat the array as a “circular array” with head and tail connected.

For a circular array, we need to let front or rear wrap around to the beginning of the array when they
cross the end. This periodic pattern can be implemented using the “modulo operation,” as shown in
the code below:

^/ ^^= File: array_queue.cpp ^^=

^* Queue based on circular array implementation ^/
class ArrayQueue {

private:
int *nums; ^/ Array for storing queue elements
int front; ^/ Front pointer, points to the front of the queue element
int queSize; ^/ Queue length
int queCapacity; ^/ Queue capacity

public:
ArrayQueue(int capacity) {

^/ Initialize array
nums = new int[capacity];
queCapacity = capacity;
front = queSize = 0;

}

~ArrayQueue() {
delete[] nums;

}



Chapter 5. Stack and Queue www.hello-algo.com 110

^* Get the capacity of the queue ^/
int capacity() {

return queCapacity;
}

^* Get the length of the queue ^/
int size() {

return queSize;
}

^* Check if the queue is empty ^/
bool isEmpty() {

return size() ^= 0;
}

^* Enqueue ^/
void push(int num) {

if (queSize ^= queCapacity) {
cout << "Queue is full" << endl;
return;

}
^/ Use modulo operation to wrap rear around to the head after passing the tail of the array
^/ Add num to the rear of the queue
int rear = (front + queSize) % queCapacity;
^/ Front pointer moves one position backward
nums[rear] = num;
queSize^+;

}

^* Dequeue ^/
int pop() {

int num = peek();
^/ Move front pointer backward by one position, if it passes the tail, return to array head
front = (front + 1) % queCapacity;
queSize--;
return num;

}

^* Return list for printing ^/
int peek() {

if (isEmpty())
throw out_of_range("Queue is empty");

return nums[front];
}

^* Convert array to Vector and return ^/
vector<int> toVector() {

^/ Elements enqueue
vector<int> arr(queSize);
for (int i = 0, j = front; i < queSize; i^+, j^+) {

arr[i] = nums[j % queCapacity];
}
return arr;

}
};

The queue implemented above still has limitations: its length is immutable. However, this problem
is not difficult to solve. We can replace the array with a dynamic array to introduce an expansion
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mechanism. Interested readers can try to implement this themselves.

The comparison conclusions for the two implementations are consistent with those for stacks and will
not be repeated here.

5.2.3 Typical Applications of Queue

• Taobao orders. After shoppers place orders, the orders are added to a queue, and the system sub-
sequently processes the orders in the queue according to their sequence. During Double Eleven,
massive orders are generated in a short time, and high concurrency becomes a key challenge that
engineers need to tackle.

• Various to-do tasks. Any scenario that needs to implement “first come, first served” function-
ality, such as a printer’s task queue or a restaurant’s order queue, can effectively maintain the
processing order using queues.

5.3 Deque

In a queue, we can only remove elements from the front or add elements at the rear. As shown in
Figure 5-7, a double-ended queue (deque) provides greater flexibility, allowing the addition or removal
of elements at both the front and rear.

Figure 5-7 Operations of deque

5.3.1 Common Deque Operations

The common operations on a deque are shown in Table 5-3. The specific method names depend on
the programming language used.
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Table 5-3 Efficiency of Deque Operations

Method Description Time Complexity

push_first() Add element to front 𝑂(1)
push_last() Add element to rear 𝑂(1)
pop_first() Remove front element 𝑂(1)
pop_last() Remove rear element 𝑂(1)
peek_first() Access front element 𝑂(1)
peek_last() Access rear element 𝑂(1)

Similarly, we can directly use the deque classes already implemented in programming languages:

^/ ^^= File: deque.cpp ^^=

^* Initialize deque ^/
deque<int> deque;

^* Enqueue elements ^/
deque.push_back(2); ^/ Add to rear
deque.push_back(5);
deque.push_back(4);
deque.push_front(3); ^/ Add to front
deque.push_front(1);

^* Access elements ^/
int front = deque.front(); ^/ Front element
int back = deque.back(); ^/ Rear element

^* Dequeue elements ^/
deque.pop_front(); ^/ Front element dequeue
deque.pop_back(); ^/ Rear element dequeue

^* Get deque length ^/
int size = deque.size();

^* Check if deque is empty ^/
bool empty = deque.empty();

5.3.2 Deque Implementation *

The implementation of a deque is similar to that of a queue. You can choose either a linked list or an
array as the underlying data structure.

1. Doubly Linked List Implementation

Reviewing the previous section, we used a regular singly linked list to implement a queue because it
conveniently allows deleting the head node (corresponding to dequeue) and adding new nodes after
the tail node (corresponding to enqueue).



Chapter 5. Stack and Queue www.hello-algo.com 113

For a deque, both the front and rear can perform enqueue and dequeue operations. In other words,
a deque needs to implement operations in the opposite direction as well. For this reason, we use a
“doubly linked list” as the underlying data structure for the deque.

As shown in Figure 5-8, we treat the head and tail nodes of the doubly linked list as the front and rear
of the deque, implementing functionality to add and remove nodes at both ends.

Figure 5-8 Enqueue and dequeue operations in linked list implementation of deque

The implementation code is shown below:

^/ ^^= File: linkedlist_deque.cpp ^^=

^* Doubly linked list node ^/
struct DoublyListNode {

int val; ^/ Node value
DoublyListNode *next; ^/ Successor node pointer
DoublyListNode *prev; ^/ Predecessor node pointer
DoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {
}
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};

^* Double-ended queue based on doubly linked list implementation ^/
class LinkedListDeque {

private:
DoublyListNode *front, *rear; ^/ Head node front, tail node rear
int queSize = 0; ^/ Length of the double-ended queue

public:
^* Constructor ^/
LinkedListDeque() : front(nullptr), rear(nullptr) {
}

^* Destructor ^/
~LinkedListDeque() {

^/ Traverse linked list to delete nodes and free memory
DoublyListNode *pre, *cur = front;
while (cur ^= nullptr) {

pre = cur;
cur = cur->next;
delete pre;

}
}

^* Get the length of the double-ended queue ^/
int size() {

return queSize;
}

^* Check if the double-ended queue is empty ^/
bool isEmpty() {

return size() ^= 0;
}

^* Enqueue operation ^/
void push(int num, bool isFront) {

DoublyListNode *node = new DoublyListNode(num);
^/ If the linked list is empty, make both front and rear point to node
if (isEmpty())

front = rear = node;
^/ Front of the queue enqueue operation
else if (isFront) {

^/ Add node to the head of the linked list
front->prev = node;
node->next = front;
front = node; ^/ Update head node

^/ Rear of the queue enqueue operation
} else {

^/ Add node to the tail of the linked list
rear->next = node;
node->prev = rear;
rear = node; ^/ Update tail node

}
queSize^+; ^/ Update queue length

}

^* Front of the queue enqueue ^/
void pushFirst(int num) {

push(num, true);
}
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^* Rear of the queue enqueue ^/
void pushLast(int num) {

push(num, false);
}

^* Dequeue operation ^/
int pop(bool isFront) {

if (isEmpty())
throw out_of_range("Queue is empty");

int val;
^/ Temporarily store head node value
if (isFront) {

val = front->val; ^/ Delete head node
^/ Delete head node
DoublyListNode *fNext = front->next;
if (fNext ^= nullptr) {

fNext->prev = nullptr;
front->next = nullptr;

}
delete front;
front = fNext; ^/ Update head node

^/ Temporarily store tail node value
} else {

val = rear->val; ^/ Delete tail node
^/ Update tail node
DoublyListNode *rPrev = rear->prev;
if (rPrev ^= nullptr) {

rPrev->next = nullptr;
rear->prev = nullptr;

}
delete rear;
rear = rPrev; ^/ Update tail node

}
queSize--; ^/ Update queue length
return val;

}

^* Rear of the queue dequeue ^/
int popFirst() {

return pop(true);
}

^* Access rear of the queue element ^/
int popLast() {

return pop(false);
}

^* Return list for printing ^/
int peekFirst() {

if (isEmpty())
throw out_of_range("Deque is empty");

return front->val;
}

^* Driver Code ^/
int peekLast() {

if (isEmpty())
throw out_of_range("Deque is empty");

return rear->val;
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}

^* Return array for printing ^/
vector<int> toVector() {

DoublyListNode *node = front;
vector<int> res(size());
for (int i = 0; i < res.size(); i^+) {

res[i] = node->val;
node = node->next;

}
return res;

}
};

2. Array Implementation

As shown in Figure 5-9, similar to implementing a queue based on an array, we can also use a circular
array to implement a deque.
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Figure 5-9 Enqueue and dequeue operations in array implementation of deque

Based on the queue implementation, we only need to addmethods for “enqueue at front” and “dequeue
from rear”:

^/ ^^= File: array_deque.cpp ^^=

^* Double-ended queue based on circular array implementation ^/
class ArrayDeque {

private:
vector<int> nums; ^/ Array for storing double-ended queue elements
int front; ^/ Front pointer, points to the front of the queue element
int queSize; ^/ Double-ended queue length

public:
^* Constructor ^/
ArrayDeque(int capacity) {

nums.resize(capacity);
front = queSize = 0;

}

^* Get the capacity of the double-ended queue ^/
int capacity() {

return nums.size();
}

^* Get the length of the double-ended queue ^/
int size() {

return queSize;
}

^* Check if the double-ended queue is empty ^/
bool isEmpty() {

return queSize ^= 0;
}

^* Calculate circular array index ^/
int index(int i) {

^/ Use modulo operation to wrap the array head and tail together
^/ When i passes the tail of the array, return to the head
^/ When i passes the head of the array, return to the tail
return (i + capacity()) % capacity();

}

^* Front of the queue enqueue ^/
void pushFirst(int num) {

if (queSize ^= capacity()) {
cout << "Double-ended queue is full" << endl;
return;

}
^/ Use modulo operation to wrap front around to the tail after passing the head of the

array↪
^/ Add num to the front of the queue
front = index(front - 1);
^/ Add num to front of queue
nums[front] = num;
queSize^+;

}
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^* Rear of the queue enqueue ^/
void pushLast(int num) {

if (queSize ^= capacity()) {
cout << "Double-ended queue is full" << endl;
return;

}
^/ Use modulo operation to wrap rear around to the head after passing the tail of the array
int rear = index(front + queSize);
^/ Front pointer moves one position backward
nums[rear] = num;
queSize^+;

}

^* Rear of the queue dequeue ^/
int popFirst() {

int num = peekFirst();
^/ Move front pointer backward by one position
front = index(front + 1);
queSize--;
return num;

}

^* Access rear of the queue element ^/
int popLast() {

int num = peekLast();
queSize--;
return num;

}

^* Return list for printing ^/
int peekFirst() {

if (isEmpty())
throw out_of_range("Deque is empty");

return nums[front];
}

^* Driver Code ^/
int peekLast() {

if (isEmpty())
throw out_of_range("Deque is empty");

^/ Initialize double-ended queue
int last = index(front + queSize - 1);
return nums[last];

}

^* Return array for printing ^/
vector<int> toVector() {

^/ Elements enqueue
vector<int> res(queSize);
for (int i = 0, j = front; i < queSize; i^+, j^+) {

res[i] = nums[index(j)];
}
return res;

}
};
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5.3.3 Deque Applications

A deque combines the logic of both stacks and queues. Therefore, it can implement all application
scenarios of both, while providing greater flexibility.

We know that the “undo” function in software is typically implemented using a stack: the system pushes
each change operation onto the stack and then implements undo through pop. However, considering
system resource limitations, software usually limits the number of undo steps (for example, only allow-
ing 50 steps to be saved). When the stack length exceeds 50, the software needs to perform a deletion
operation at the bottom of the stack (front of the queue). But a stack cannot implement this function-
ality, so a deque is needed to replace the stack. Note that the core logic of “undo” still follows the LIFO
principle of a stack; it’s just that the deque can more flexibly implement some additional logic.

5.4 Summary

1. Key Review

• A stack is a data structure that follows the LIFO principle and can be implemented using arrays
or linked lists.

• In terms of time efficiency, the array implementation of a stack has higher average efficiency, but
during expansion, the time complexity of a single push operation degrades to 𝑂(𝑛). In contrast,
the linked list implementation of a stack provides more stable efficiency performance.

• In terms of space efficiency, the array implementation of a stack may lead to some degree of
space wastage. However, it should be noted that the memory space occupied by linked list nodes
is larger than that of array elements.

• A queue is a data structure that follows the FIFO principle and can also be implemented using
arrays or linked lists. The conclusions regarding time efficiency and space efficiency comparisons
for queues are similar to those for stacks mentioned above.

• A deque is a queue with greater flexibility that allows adding and removing elements at both ends.

2. Q & A

Q: Is the browser’s forward and backward functionality implemented with a doubly linked list?

The forward and backward functionality of a browser is essentially a manifestation of a “stack.” When
a user visits a new page, that page is added to the top of the stack; when the user clicks the back
button, that page is popped from the top of the stack. Using a deque can conveniently implement some
additional operations, as mentioned in the “Deque” section.

Q: After popping from the stack, do we need to free the memory of the popped node?

If the popped node will still be needed later, then memory does not need to be freed. If it won’t be
used afterward, languages like Java and Python have automatic garbage collection, so manual memory
deallocation is not required; in C and C++, manual memory deallocation is necessary.

Q: A deque seems like two stacks joined together. What is its purpose?
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A deque is like a combination of a stack and a queue, or two stacks joined together. It exhibits the
logic of both stack and queue, so it can implement all applications of stacks and queues, and is more
flexible.

Q: How are undo and redo specifically implemented?

Use two stacks: stack A for undo and stack B for redo.

1. Whenever the user performs an operation, push this operation onto stack A and clear stack B.
2. When the user performs “undo,” pop the most recent operation from stack A and push it onto
stack B.

3. When the user performs “redo,” pop themost recent operation from stack B and push it onto stack
A.
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Chapter 6. Hashing

Abstract
In the world of computing, a hash table is like a clever librarian.
They know how to calculate call numbers, enabling them to quickly locate the target book.
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6.1 Hash Table

A hash table, also known as a hash map, establishes a mapping between keys key and values value,
enabling efficient element retrieval. Specifically, when we input a key key into a hash table, we can
retrieve the corresponding value value in𝑂(1) time.
As shown in Figure 6-1, given 𝑛 students, each with two pieces of data: “name” and “student ID”. If we
want to implement a query function that “inputs a student ID and returns the corresponding name”, we
can use the hash table shown below.

Figure 6-1 Abstract representation of a hash table

In addition to hash tables, arrays and linked lists can also implement query functionality. Their effi-
ciency comparison is shown in the following table.

• Adding elements: Simply add elements to the end of the array (linked list), using𝑂(1) time.
• Querying elements: Since the array (linked list) is unordered, all elements need to be traversed,
using𝑂(𝑛) time.

• Deleting elements: The element must first be located, then deleted from the array (linked list),
using𝑂(𝑛) time.

Table 6-1 Comparison of element query efficiency

Array Linked List Hash Table

Find element 𝑂(𝑛) 𝑂(𝑛) 𝑂(1)
Add element 𝑂(1) 𝑂(1) 𝑂(1)
Delete element 𝑂(𝑛) 𝑂(𝑛) 𝑂(1)

As observed, the time complexity for insertion, deletion, search, and modification operations in a
hash table is𝑂(1), which is very efficient.
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6.1.1 Common Hash Table Operations

Common operations on hash tables include: initialization, query operations, adding key-value pairs,
and deleting key-value pairs. Example code is as follows:

^/ ^^= File: hash_map.cpp ^^=

^* Initialize hash table ^/
unordered_map<int, string> map;

^* Add operation ^/
^/ Add key-value pair (key, value) to hash table
map[12836] = "XiaoHa";
map[15937] = "XiaoLuo";
map[16750] = "XiaoSuan";
map[13276] = "XiaoFa";
map[10583] = "XiaoYa";

^* Query operation ^/
^/ Input key into hash table to get value
string name = map[15937];

^* Delete operation ^/
^/ Delete key-value pair (key, value) from hash table
map.erase(10583);

There are three common ways to traverse a hash table: traversing key-value pairs, traversing keys, and
traversing values. Example code is as follows:

^/ ^^= File: hash_map.cpp ^^=

^* Traverse hash table ^/
^/ Traverse key-value pairs key->value
for (auto kv: map) {

cout << kv.first << " -> " << kv.second << endl;
}
^/ Traverse using iterator key->value
for (auto iter = map.begin(); iter ^= map.end(); iter^+) {

cout << iter->first << "->" << iter->second << endl;
}

6.1.2 Simple Hash Table Implementation

Let’s first consider the simplest case: implementing a hash table using only an array. In a hash table,
each empty position in the array is called a bucket, and each bucket can store a key-value pair. There-
fore, the query operation is to find the bucket corresponding to key and retrieve the value from the
bucket.

So how do we locate the corresponding bucket based on key? This is achieved through a hash function.
The role of the hash function is to map a larger input space to a smaller output space. In a hash table,
the input space is all keys, and the output space is all buckets (array indices). In other words, given a
key, we can use the hash function to obtain the storage location of the key-value pair corresponding
to that key in the array.
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When inputting a key, the hash function’s calculation process consists of the following two steps:

1. Calculate the hash value through a hash algorithm hash().
2. Take the modulo of the hash value by the number of buckets (array length) capacity to obtain the
bucket (array index) index corresponding to that key.

index = hash(key) % capacity

Subsequently, we can use index to access the corresponding bucket in the hash table and retrieve the
value.

Assuming the array length is capacity = 100 and the hash algorithm is hash(key) = key, the hash
function becomes key % 100. Figure 6-2 shows the working principle of the hash function using key
as student ID and value as name.

Figure 6-2 Working principle of hash function

The following code implements a simple hash table. Here, we encapsulate key and value into a class
Pair to represent a key-value pair.

^/ ^^= File: array_hash_map.cpp ^^=

^* Key-value pair ^/
struct Pair {

public:
int key;
string val;
Pair(int key, string val) {

this->key = key;
this->val = val;

}
};
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^* Hash table based on array implementation ^/
class ArrayHashMap {

private:
vector<Pair ^> buckets;

public:
ArrayHashMap() {

^/ Initialize array with 100 buckets
buckets = vector<Pair ^>(100);

}

~ArrayHashMap() {
^/ Free memory
for (const auto &bucket : buckets) {

delete bucket;
}
buckets.clear();

}

^* Hash function ^/
int hashFunc(int key) {

int index = key % 100;
return index;

}

^* Query operation ^/
string get(int key) {

int index = hashFunc(key);
Pair *pair = buckets[index];
if (pair ^= nullptr)

return "";
return pair->val;

}

^* Add operation ^/
void put(int key, string val) {

Pair *pair = new Pair(key, val);
int index = hashFunc(key);
buckets[index] = pair;

}

^* Remove operation ^/
void remove(int key) {

int index = hashFunc(key);
^/ Free memory and set to nullptr
delete buckets[index];
buckets[index] = nullptr;

}

^* Get all key-value pairs ^/
vector<Pair ^> pairSet() {

vector<Pair ^> pairSet;
for (Pair *pair : buckets) {

if (pair ^= nullptr) {
pairSet.push_back(pair);

}
}
return pairSet;

}
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^* Get all keys ^/
vector<int> keySet() {

vector<int> keySet;
for (Pair *pair : buckets) {

if (pair ^= nullptr) {
keySet.push_back(pair->key);

}
}
return keySet;

}

^* Get all values ^/
vector<string> valueSet() {

vector<string> valueSet;
for (Pair *pair : buckets) {

if (pair ^= nullptr) {
valueSet.push_back(pair->val);

}
}
return valueSet;

}

^* Print hash table ^/
void print() {

for (Pair *kv : pairSet()) {
cout << kv->key << " -> " << kv->val << endl;

}
}

};

6.1.3 Hash Collision and Resizing

Fundamentally, the role of a hash function is to map the input space consisting of all keys to the out-
put space consisting of all array indices, and the input space is often much larger than the output
space. Therefore, theoretically there must be cases where “multiple inputs correspond to the same
output”.

For the hash function in the above example, when the input keys have the same last two digits, the
hash function produces the same output. For example, when querying two students with IDs 12836
and 20336, we get:

12836 % 100 = 36
20336 % 100 = 36

As shown in Figure 6-3, two student IDs point to the same name, which is obviously incorrect. We call
this situation where multiple inputs correspond to the same output a hash collision.
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Figure 6-3 Hash collision example

It’s easy to see that the larger the hash table capacity 𝑛, the lower the probability that multiple keys
will be assigned to the same bucket, and the fewer collisions. Therefore,we can reduce hash collisions
by expanding the hash table.

As shown in Figure 6-4, before expansion, the key-value pairs (136, A) and (236, D) collided, but
after expansion, the collision disappears.

Figure 6-4 Hash table resizing

Similar to array expansion, hash table expansion requiresmigrating all key-value pairs from the original
hash table to the newhash table, which is very time-consuming. Moreover, since the hash table capacity
capacity changes, we need to recalculate the storage locations of all key-value pairs through the hash
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function, further increasing the computational overhead of the expansion process. For this reason,
programming languages typically reserve a sufficiently large hash table capacity to prevent frequent
expansion.

The load factor is an important concept for hash tables. It is defined as the number of elements in the
hash table divided by the number of buckets, and is used to measure the severity of hash collisions. It
is also commonly used as a trigger condition for hash table expansion. For example, in Java, when the
load factor exceeds 0.75, the system will expand the hash table to 2 times its original size.

6.2 Hash Collision

The previous section mentioned that, in most cases, the input space of a hash function is much larger
than the output space, so theoretically, hash collisions are inevitable. For example, if the input space
is all integers and the output space is the array capacity size, then multiple integers will inevitably be
mapped to the same bucket index.

Hash collisions can lead to incorrect query results, severely impacting the usability of the hash table.
To address this issue, whenever a hash collision occurs, we can perform hash table expansion until the
collision disappears. This approach is simple, straightforward, and effective, but it is very inefficient
because hash table expansion involves a large amount of data migration and hash value recalculation.
To improve efficiency, we can adopt the following strategies:

1. Improve the hash table data structure so that the hash table can function normally when hash
collisions occur.

2. Only expand when necessary, that is, only when hash collisions are severe.

The main methods for improving the structure of hash tables include “separate chaining” and “open
addressing”.

6.2.1 Separate Chaining

In the original hash table, each bucket can store only one key-value pair. Separate chaining converts
a single element into a linked list, treating key-value pairs as linked list nodes and storing all colliding
key-value pairs in the same linked list. Figure 6-5 shows an example of a separate chaining hash table.
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Figure 6-5 Separate chaining hash table

The operations of a hash table implemented with separate chaining have changed as follows:

• Querying elements: Input key, obtain the bucket index through the hash function, then access
the head node of the linked list, then traverse the linked list and compare key to find the target
key-value pair.

• Adding elements: First access the linked list head node through the hash function, then append
the node (key-value pair) to the linked list.

• Deleting elements: Access the head of the linked list based on the result of the hash function,
then traverse the linked list to find the target node and delete it.

Separate chaining has the following limitations:

• Increased Space Usage: The linked list contains node pointers, which consume more memory
space than arrays.

• Reduced Query Efficiency: This is because linear traversal of the linked list is required to find the
corresponding element.

The code below provides a simple implementation of a separate chaining hash table, with two things
to note:

• Lists (dynamic arrays) are used instead of linked lists to simplify the code. In this setup, the hash
table (array) contains multiple buckets, each of which is a list.

• This implementation includes a hash table expansion method. When the load factor exceeds 2
3 ,

we expand the hash table to 2 times its original size.

^/ ^^= File: hash_map_chaining.cpp ^^=

^* Hash table with separate chaining ^/
class HashMapChaining {

private:
int size; ^/ Number of key-value pairs
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int capacity; ^/ Hash table capacity
double loadThres; ^/ Load factor threshold for triggering expansion
int extendRatio; ^/ Expansion multiplier
vector<vector<Pair ^>> buckets; ^/ Bucket array

public:
^* Constructor ^/
HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3.0), extendRatio(2) {

buckets.resize(capacity);
}

^* Destructor ^/
~HashMapChaining() {

for (auto &bucket : buckets) {
for (Pair *pair : bucket) {

^/ Free memory
delete pair;

}
}

}

^* Hash function ^/
int hashFunc(int key) {

return key % capacity;
}

^* Load factor ^/
double loadFactor() {

return (double)size / (double)capacity;
}

^* Query operation ^/
string get(int key) {

int index = hashFunc(key);
^/ Traverse bucket, if key is found, return corresponding val
for (Pair *pair : buckets[index]) {

if (pair->key ^= key) {
return pair->val;

}
}
^/ Return empty string if key not found
return "";

}

^* Add operation ^/
void put(int key, string val) {

^/ When load factor exceeds threshold, perform expansion
if (loadFactor() > loadThres) {

extend();
}
int index = hashFunc(key);
^/ Traverse bucket, if specified key is encountered, update corresponding val and return
for (Pair *pair : buckets[index]) {

if (pair->key ^= key) {
pair->val = val;
return;

}
}
^/ If key does not exist, append key-value pair to the end
buckets[index].push_back(new Pair(key, val));
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size^+;
}

^* Remove operation ^/
void remove(int key) {

int index = hashFunc(key);
auto &bucket = buckets[index];
^/ Traverse bucket and remove key-value pair from it
for (int i = 0; i < bucket.size(); i^+) {

if (bucket[i]->key ^= key) {
Pair *tmp = bucket[i];
bucket.erase(bucket.begin() + i); ^/ Remove key-value pair from it
delete tmp; ^/ Free memory
size--;
return;

}
}

}

^* Expand hash table ^/
void extend() {

^/ Temporarily store the original hash table
vector<vector<Pair ^>> bucketsTmp = buckets;
^/ Initialize expanded new hash table
capacity *= extendRatio;
buckets.clear();
buckets.resize(capacity);
size = 0;
^/ Move key-value pairs from original hash table to new hash table
for (auto &bucket : bucketsTmp) {

for (Pair *pair : bucket) {
put(pair->key, pair->val);
^/ Free memory
delete pair;

}
}

}

^* Print hash table ^/
void print() {

for (auto &bucket : buckets) {
cout << "[";
for (Pair *pair : bucket) {

cout << pair->key << " -> " << pair->val << ", ";
}
cout << "]\n";

}
}

};

It’s worth noting that when the linked list is very long, the query efficiency 𝑂(𝑛) is poor. In this case,
the list can be converted to an “AVL tree” or “Red-Black tree” to optimize the time complexity of the
query operation to𝑂(log𝑛).
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6.2.2 Open Addressing

Open addressing does not introduce additional data structures but instead handles hash collisions
through “multiple probes”. The probing methods mainly include linear probing, quadratic probing, and
double hashing.

Let’s use linear probing as an example to introduce the mechanism of open addressing hash tables.

1. Linear Probing

Linear probing uses a fixed-step linear search for probing, and its operation method differs from ordi-
nary hash tables.

• Inserting elements: Calculate the bucket index using the hash function. If the bucket already
contains an element, linearly traverse forward from the conflict position (usually with a step size
of 1) until an empty bucket is found, then insert the element.

• Searching for elements: If a hash collision is encountered, use the same step size to linearly
traverse forward until the corresponding element is found and return value; if an empty bucket
is encountered, it means the target element is not in the hash table, so return None.

Figure 6-6 shows the distribution of key-value pairs in an open addressing (linear probing) hash table.
According to this hash function, keys with the same last two digits will be mapped to the same bucket.
Through linear probing, they are stored sequentially in that bucket and the buckets below it.

Figure 6-6 Distribution of key-value pairs in open addressing (linear probing) hash table

However, linear probing is prone to create “clustering”. Specifically, the longer the continuously occu-
pied positions in the array, the greater the probability of hash collisions occurring in these continuous
positions, further promoting clustering growth at that position, forming a vicious cycle, and ultimately
leading to degraded efficiency of insertion, deletion, query, and update operations.
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It’s important to note thatwe cannot directly delete elements in an open addressing hash table. Delet-
ing an element creates an empty bucket None in the array. When searching for elements, if linear
probing encounters this empty bucket, it will return, making the elements below this empty bucket
inaccessible. The program may incorrectly assume these elements do not exist, as shown in Figure
6-7.

Figure 6-7 Query issues caused by deletion in open addressing

To solve this problem, we can adopt the lazy deletionmechanism: instead of directly removing elements
from the hash table, use a constant TOMBSTONE to mark the bucket. In this mechanism, both None
and TOMBSTONE represent empty buckets and can hold key-value pairs. However, when linear probing
encounters TOMBSTONE, it should continue traversing since there may still be key-value pairs below it.

However, lazy deletion may accelerate the performance degradation of the hash table. Every deletion
operation produces a deletion mark, and as TOMBSTONE increases, the search time will also increase
because linear probing may need to skip multiple TOMBSTONE to find the target element.

To address this, consider recording the index of the first encountered TOMBSTONE during linear probing
and swapping the searched target element with that TOMBSTONE. The benefit of doing this is that each
time an element is queried or added, the element will be moved to a bucket closer to its ideal position
(the starting point of probing), thereby optimizing query efficiency.

The code below implements an open addressing (linear probing) hash table with lazy deletion. To make
better use of the hash table space, we treat the hash table as a “circular array”. When going beyond the
end of the array, we return to the beginning and continue traversing.

^/ ^^= File: hash_map_open_addressing.cpp ^^=

^* Hash table with open addressing ^/
class HashMapOpenAddressing {

private:
int size; ^/ Number of key-value pairs
int capacity = 4; ^/ Hash table capacity
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const double loadThres = 2.0 / 3.0; ^/ Load factor threshold for triggering expansion
const int extendRatio = 2; ^/ Expansion multiplier
vector<Pair ^> buckets; ^/ Bucket array
Pair *TOMBSTONE = new Pair(-1, "-1"); ^/ Removal marker

public:
^* Constructor ^/
HashMapOpenAddressing() : size(0), buckets(capacity, nullptr) {
}

^* Destructor ^/
~HashMapOpenAddressing() {

for (Pair *pair : buckets) {
if (pair ^= nullptr ^& pair ^= TOMBSTONE) {

delete pair;
}

}
delete TOMBSTONE;

}

^* Hash function ^/
int hashFunc(int key) {

return key % capacity;
}

^* Load factor ^/
double loadFactor() {

return (double)size / capacity;
}

^* Search for bucket index corresponding to key ^/
int findBucket(int key) {

int index = hashFunc(key);
int firstTombstone = -1;
^/ Linear probing, break when encountering an empty bucket
while (buckets[index] ^= nullptr) {

^/ If key is encountered, return the corresponding bucket index
if (buckets[index]->key ^= key) {

^/ If a removal marker was encountered before, move the key-value pair to that
index↪

if (firstTombstone ^= -1) {
buckets[firstTombstone] = buckets[index];
buckets[index] = TOMBSTONE;
return firstTombstone; ^/ Return the moved bucket index

}
return index; ^/ Return bucket index

}
^/ Record the first removal marker encountered
if (firstTombstone ^= -1 ^& buckets[index] ^= TOMBSTONE) {

firstTombstone = index;
}
^/ Calculate bucket index, wrap around to the head if past the tail
index = (index + 1) % capacity;

}
^/ If key does not exist, return the index for insertion
return firstTombstone ^= -1 ? index : firstTombstone;

}

^* Query operation ^/
string get(int key) {
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^/ Search for bucket index corresponding to key
int index = findBucket(key);
^/ If key-value pair is found, return corresponding val
if (buckets[index] ^= nullptr ^& buckets[index] ^= TOMBSTONE) {

return buckets[index]->val;
}
^/ Return empty string if key-value pair does not exist
return "";

}

^* Add operation ^/
void put(int key, string val) {

^/ When load factor exceeds threshold, perform expansion
if (loadFactor() > loadThres) {

extend();
}
^/ Search for bucket index corresponding to key
int index = findBucket(key);
^/ If key-value pair is found, overwrite val and return
if (buckets[index] ^= nullptr ^& buckets[index] ^= TOMBSTONE) {

buckets[index]->val = val;
return;

}
^/ If key-value pair does not exist, add the key-value pair
buckets[index] = new Pair(key, val);
size^+;

}

^* Remove operation ^/
void remove(int key) {

^/ Search for bucket index corresponding to key
int index = findBucket(key);
^/ If key-value pair is found, overwrite it with removal marker
if (buckets[index] ^= nullptr ^& buckets[index] ^= TOMBSTONE) {

delete buckets[index];
buckets[index] = TOMBSTONE;
size--;

}
}

^* Expand hash table ^/
void extend() {

^/ Temporarily store the original hash table
vector<Pair ^> bucketsTmp = buckets;
^/ Initialize expanded new hash table
capacity *= extendRatio;
buckets = vector<Pair ^>(capacity, nullptr);
size = 0;
^/ Move key-value pairs from original hash table to new hash table
for (Pair *pair : bucketsTmp) {

if (pair ^= nullptr ^& pair ^= TOMBSTONE) {
put(pair->key, pair->val);
delete pair;

}
}

}

^* Print hash table ^/
void print() {

for (Pair *pair : buckets) {
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if (pair ^= nullptr) {
cout << "nullptr" << endl;

} else if (pair ^= TOMBSTONE) {
cout << "TOMBSTONE" << endl;

} else {
cout << pair->key << " -> " << pair->val << endl;

}
}

}
};

2. Quadratic Probing

Quadratic probing is similar to linear probing and is one of the common strategies for open addressing.
When a collision occurs, quadratic probing does not simply skip a fixed number of steps but skips a
number of steps equal to the “square of the number of probes”, i.e., 1, 4, 9, … steps.

Quadratic probing has the following advantages:

• Quadratic probing attempts to alleviate the clustering effect of linear probing by skipping dis-
tances equal to the square of the probe count.

• Quadratic probing skips larger distances to find empty positions, which helps to distribute data
more evenly.

However, quadratic probing is not perfect:

• Clustering still exists, i.e., some positions are more likely to be occupied than others.
• Due to the growth of squares, quadratic probing may not probe the entire hash table, meaning
that even if there are empty buckets in the hash table, quadratic probingmay not be able to access
them.

3. Double Hashing

As the name suggests, the double hashing method uses multiple hash functions 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥),…
for probing.

• Inserting elements: If hash function 𝑓1(𝑥) encounters a conflict, try 𝑓2(𝑥), and so on, until an
empty position is found and the element is inserted.

• Searching for elements: Search in the same order of hash functions until the target element is
found and return it; if an empty position is encountered or all hash functions have been tried, it
indicates the element is not in the hash table, then return None.

Compared to linear probing, the double hashing method is less prone to clustering, but multiple hash
functions introduce additional computational overhead.

Tip
Please note that open addressing (linear probing, quadratic probing, and double hashing) hash
tables all have the problem of “cannot directly delete elements”.
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6.2.3 Choice of Programming Languages

Different programming languages adopt different hash table implementation strategies. Here are a few
examples:

• Python uses open addressing. The dict dictionary uses pseudo-random numbers for probing.
• Java uses separate chaining. Since JDK 1.8, when the array length in HashMap reaches 64 and the
length of a linked list reaches 8, the linked list is converted to a red-black tree to improve search
performance.

• Go uses separate chaining. Go stipulates that each bucket can store up to 8 key-value pairs, and if
the capacity is exceeded, an overflow bucket is linked; when there are toomany overflow buckets,
a special equal-capacity expansion operation is performed to ensure performance.

6.3 Hash Algorithm

The previous two sections introduced the working principle of hash tables and the methods to han-
dle hash collisions. However, both open addressing and separate chaining can only ensure that the
hash table functions normally when hash collisions occur, but cannot reduce the frequency of hash
collisions.

If hash collisions occur too frequently, the performance of the hash table will deteriorate drastically. As
shown in Figure 6-8, for a separate chaining hash table, in the ideal case, the key-value pairs are evenly
distributed across the buckets, achieving optimal query efficiency; in the worst case, all key-value pairs
are stored in the same bucket, degrading the time complexity to𝑂(𝑛).

Figure 6-8 Ideal and worst cases of hash collisions

The distribution of key-value pairs is determined by the hash function. Recalling the calculation steps
of the hash function, first compute the hash value, then take the modulo by the array length:
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index = hash(key) % capacity

Observing the above formula, when the hash table capacity capacity is fixed, the hash algorithm
hash() determines the output value, thereby determining the distribution of key-value pairs in the
hash table.

This means that, to reduce the probability of hash collisions, we should focus on the design of the hash
algorithm hash().

6.3.1 Goals of Hash Algorithms

To achieve a “fast and stable” hash table data structure, hash algorithms should have the following
characteristics:

• Determinism: For the same input, the hash algorithm should always produce the same output.
Only then can the hash table be reliable.

• High efficiency: The process of computing the hash value should be fast enough. The smaller the
computational overhead, the more practical the hash table.

• Uniform distribution: The hash algorithm should ensure that key-value pairs are evenly dis-
tributed in the hash table. The more uniform the distribution, the lower the probability of hash
collisions.

In fact, hash algorithms are not only used to implement hash tables but are also widely applied in other
fields.

• Password storage: To protect the security of user passwords, systems usually do not store the
plaintext passwords but rather the hash values of the passwords. When a user enters a password,
the system calculates the hash value of the input and compares it with the stored hash value. If
they match, the password is considered correct.

• Data integrity check: The data sender can calculate the hash value of the data and send it along;
the receiver can recalculate the hash value of the received data and compare it with the received
hash value. If they match, the data is considered intact.

For cryptographic applications, to prevent reverse engineering such as deducing the original password
from the hash value, hash algorithms need higher-level security features.

• Unidirectionality: It should be impossible to deduce any information about the input data from
the hash value.

• Collision resistance: It should be extremely difficult to find two different inputs that produce the
same hash value.

• Avalanche effect: Minor changes in the input should lead to significant and unpredictable changes
in the output.

Note that “uniform distribution” and “collision resistance” are two independent concepts. Satisfying
uniform distribution does not necessarily mean collision resistance. For example, under random input
key, the hash function key % 100 can produce a uniformly distributed output. However, this hash
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algorithm is too simple, and all key with the same last two digits will have the same output, making it
easy to deduce a usable key from the hash value, thereby cracking the password.

6.3.2 Design of Hash Algorithms

The design of hash algorithms is a complex issue that requires consideration of many factors. However,
for some less demanding scenarios, we can also design some simple hash algorithms.

• Additive hash: Add up the ASCII codes of each character in the input and use the total sum as the
hash value.

• Multiplicative hash: Utilize the non-correlation of multiplication, multiplying each round by a
constant, accumulating the ASCII codes of each character into the hash value.

• XOR hash: Accumulate the hash value by XORing each element of the input data.
• Rotating hash: Accumulate the ASCII code of each character into a hash value, performing a
rotation operation on the hash value before each accumulation.

^/ ^^= File: simple_hash.cpp ^^=

^* Additive hash ^/
int addHash(string key) {

long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {

hash = (hash + (int)c) % MODULUS;
}
return (int)hash;

}

^* Multiplicative hash ^/
int mulHash(string key) {

long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {

hash = (31 * hash + (int)c) % MODULUS;
}
return (int)hash;

}

^* XOR hash ^/
int xorHash(string key) {

int hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {

hash ^= (int)c;
}
return hash & MODULUS;

}

^* Rotational hash ^/
int rotHash(string key) {

long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {

hash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;
}
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return (int)hash;
}

It is observed that the last step of each hash algorithm is to take the modulus of the large prime number
1000000007 to ensure that the hash value is within an appropriate range. It is worth pondering why
emphasis is placed on modulo a prime number, or what are the disadvantages of modulo a composite
number? This is an interesting question.

To conclude: Using a large prime number as the modulus can maximize the uniform distribution of
hash values. Since a prime number does not share common factors with other numbers, it can reduce
the periodic patterns caused by the modulo operation, thus avoiding hash collisions.

For example, suppose we choose the composite number 9 as the modulus, which can be divided by 3,
then all key divisible by 3 will be mapped to hash values 0, 3, 6.

modulus = 9
key = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,… }
hash = {0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,… }

If the input key happens to have this kind of arithmetic sequence distribution, then the hash values
will cluster, thereby exacerbating hash collisions. Now, suppose we replace modulus with the prime
number 13, since there are no common factors between key and modulus, the uniformity of the output
hash values will be significantly improved.

modulus = 13
key = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,… }
hash = {0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7,… }

It is worth noting that if the key is guaranteed to be randomly and uniformly distributed, then choosing
a prime number or a composite number as the modulus can both produce uniformly distributed hash
values. However, when the distribution of key has some periodicity, modulo a composite number is
more likely to result in clustering.

In summary, we usually choose a prime number as the modulus, and this prime number should be
large enough to eliminate periodic patterns as much as possible, enhancing the robustness of the hash
algorithm.

6.3.3 Common Hash Algorithms

It is not hard to see that the simple hash algorithms mentioned above are quite “fragile” and far from
reaching the design goals of hash algorithms. For example, since addition and XOR obey the commuta-
tive law, additive hash and XOR hash cannot distinguish strings with the same content but in different
order, which may exacerbate hash collisions and cause security issues.
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In practice, we usually use some standard hash algorithms, such as MD5, SHA-1, SHA-2, and SHA-3.
They can map input data of any length to a fixed-length hash value.

Over the past century, hash algorithms have been in a continuous process of upgrading and optimiza-
tion. Some researchers strive to improve the performance of hash algorithms, while others, including
hackers, are dedicated to finding security issues in hash algorithms. Table 6-2 shows hash algorithms
commonly used in practical applications.

• MD5 and SHA-1 have been successfully attackedmultiple times and are thus abandoned in various
security applications.

• SHA-2 series, especially SHA-256, is one of the most secure hash algorithms to date, with no
successful attacks reported, hence commonly used in various security applications and protocols.

• SHA-3 has lower implementation costs and higher computational efficiency compared to SHA-2,
but its current usage coverage is not as extensive as the SHA-2 series.

Table 6-2 Common hash algorithms

MD5 SHA-1 SHA-2 SHA-3

Release
Year

1992 1995 2002 2008

Output
Length

128 bit 160 bit 256/512 bit 224/256/384/512
bit

Hash
Colli-
sions

Frequent Frequent Rare Rare

Security
Level

Low, has been
successfully attacked

Low, has been
successfully
attacked

High High

ApplicationsAbandoned, still used for
data integrity checks

Abandoned Cryptocurrency transaction
verification, digital signatures, etc.

Can be used to
replace SHA-2

Hash Values in Data Structures

We know that the keys in a hash table can be of various data types such as integers, decimals, or strings.
Programming languages usually provide built-in hash algorithms for these data types to calculate the
bucket indices in the hash table. Taking Python as an example, we can use the hash() function to
compute the hash values for various data types.

• The hash values of integers and booleans are their own values.
• The calculation of hash values for floating-point numbers and strings is more complex, and inter-
ested readers are encouraged to study this on their own.

• The hash value of a tuple is a combination of the hash values of each of its elements, resulting in
a single hash value.
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• The hash value of an object is generated based on its memory address. By overriding the hash
method of an object, hash values can be generated based on content.

Tip
Be aware that the definition and methods of the built-in hash value calculation functions in dif-
ferent programming languages vary.

^/ ^^= File: built_in_hash.cpp ^^=

int num = 3;
size_t hashNum = hash<int>()(num);
^/ Hash value of integer 3 is 3

bool bol = true;
size_t hashBol = hash<bool>()(bol);
^/ Hash value of boolean 1 is 1

double dec = 3.14159;
size_t hashDec = hash<double>()(dec);
^/ Hash value of decimal 3.14159 is 4614256650576692846

string str = "Hello 算法";
size_t hashStr = hash<string>()(str);
^/ Hash value of string "Hello 算法" is 15466937326284535026

^/ In C^+, built-in std^:hash() only provides hash values for basic data types
^/ Hash values for arrays and objects need to be implemented separately

In many programming languages, only immutable objects can serve as the key in a hash table. If we
use a list (dynamic array) as a key, when the contents of the list change, its hash value also changes, and
we would no longer be able to find the original value in the hash table.

Although themember variables of a custom object (such as a linked list node) are mutable, it is hashable.
This is because the hash value of an object is usually generated based on itsmemory address, and even
if the contents of the object change, the memory address remains the same, so the hash value remains
unchanged.

You might have noticed that the hash values output in different consoles are different. This is because
the Python interpreter adds a random salt to the string hash function each time it starts up. This
approach effectively prevents HashDoS attacks and enhances the security of the hash algorithm.

6.4 Summary

1. Key Review

• Given an input key, a hash table can retrieve the corresponding value in 𝑂(1) time, which is
highly efficient.

• Common hash table operations include querying, adding key-value pairs, deleting key-value pairs,
and traversing the hash table.
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• The hash function maps a key to an array index, allowing access to the corresponding bucket and
retrieval of the value.

• Two different keys may end up with the same array index after hashing, leading to erroneous
query results. This phenomenon is known as hash collision.

• The larger the capacity of the hash table, the lower the probability of hash collisions. Therefore,
hash table expansion canmitigate hash collisions. Similar to array expansion, hash table expansion
is costly.

• The load factor, defined as the number of elements divided by the number of buckets, reflects the
severity of hash collisions and is often used as a condition to trigger hash table expansion.

• Separate chaining addresses hash collisions by converting each element into a linked list, storing
all colliding elements in the same linked list. However, excessively long linked lists can reduce
query efficiency, which can be improved by converting the linked lists into red-black trees.

• Open addressing handles hash collisions through multiple probing. Linear probing uses a fixed
step size but cannot delete elements and is prone to clustering. Double hashing uses multiple
hash functions for probing, which reduces clustering compared to linear probing but increases
computational overhead.

• Different programming languages adopt various hash table implementations. For example, Java’s
HashMap uses separate chaining, while Python’s dict employs open addressing.

• In hash tables, we desire hash algorithms with determinism, high efficiency, and uniform distribu-
tion. In cryptography, hash algorithms should also possess collision resistance and the avalanche
effect.

• Hash algorithms typically use large primenumbers asmoduli tomaximize the uniformdistribution
of hash values and reduce hash collisions.

• Common hash algorithms include MD5, SHA-1, SHA-2, and SHA-3. MD5 is often used for file
integrity checks, while SHA-2 is commonly used in secure applications and protocols.

• Programming languages usually provide built-in hash algorithms for data types to calculate bucket
indices in hash tables. Generally, only immutable objects are hashable.

2. Q & A

Q: When does the time complexity of a hash table degrade to𝑂(𝑛)?
The time complexity of a hash table can degrade to 𝑂(𝑛) when hash collisions are severe. When the
hash function is well-designed, the capacity is set appropriately, and collisions are evenly distributed,
the time complexity is 𝑂(1). We usually consider the time complexity to be 𝑂(1) when using built-in
hash tables in programming languages.

Q: Why not use the hash function 𝑓(𝑥) = 𝑥? This would eliminate collisions.
Under the hash function 𝑓(𝑥) = 𝑥, each element corresponds to a unique bucket index, which is
equivalent to an array. However, the input space is usually much larger than the output space (array
length), so the last step of a hash function is often to take the modulo of the array length. In other
words, the goal of a hash table is to map a larger state space to a smaller one while providing 𝑂(1)
query efficiency.

Q: Why can hash tables be more efficient than arrays, linked lists, or binary trees, even though hash
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tables are implemented using these structures?

Firstly, hash tables have higher time efficiency but lower space efficiency. A significant portion of mem-
ory in hash tables remains unused.

Secondly, hash tables are onlymore time-efficient in specific use cases. If a feature can be implemented
with the same time complexity using an array or a linked list, it’s usually faster than using a hash table.
This is because the computation of the hash function incurs overhead, making the constant factor in
the time complexity larger.

Lastly, the time complexity of hash tables can degrade. For example, in separate chaining, we perform
search operations in a linked list or red-black tree, which still risks degrading to𝑂(𝑛) time.
Q: Does double hashing also have the flaw of not being able to delete elements directly? Can space
marked as deleted be reused?

Double hashing is a form of open addressing, and all open addressing methods have the drawback of
not being able to delete elements directly; they require marking elements as deleted. Marked spaces
can be reused. When inserting new elements into the hash table, and the hash function points to a
position marked as deleted, that position can be used by the new element. This maintains the probing
sequence of the hash table while ensuring efficient use of space.

Q: Why do hash collisions occur during the search process in linear probing?

During the search process, the hash function points to the corresponding bucket and key-value pair. If
the key doesn’t match, it indicates a hash collision. Therefore, linear probing will search downward at
a predetermined step size until the correct key-value pair is found or the search fails.

Q: Why can expanding a hash table alleviate hash collisions?

The last step of a hash function often involves taking the modulo of the array length 𝑛, to keep the
output within the array index range. When expanding, the array length 𝑛 changes, and the indices
corresponding to the keys may also change. Keys that were previously mapped to the same bucket
might be distributed across multiple buckets after expansion, thereby mitigating hash collisions.
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Chapter 7. Tree

Abstract
Towering trees are full of vitality, with deep roots and lush leaves, spreading branches and flour-
ishing.
They show us the vivid form of divide and conquer in data.

Chapter contents
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7.1 Binary Tree

A binary tree is a non-linear data structure that represents the derivation relationship between “ances-
tors” and “descendants” and embodies the divide-and-conquer logic of “one divides into two”. Similar
to a linked list, the basic unit of a binary tree is a node, and each node contains a value, a reference to
its left child node, and a reference to its right child node.

^* Binary tree node ^/
struct TreeNode {

int val; ^/ Node value
TreeNode *left; ^/ Pointer to left child node
TreeNode *right; ^/ Pointer to right child node
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}

};

Each node has two references (pointers), pointing respectively to the left-child node and right-child
node. This node is called the parent node of these two child nodes. When given a node of a binary
tree, we call the tree formed by this node’s left child and all nodes below it the left subtree of this node.
Similarly, the right subtree can be defined.

In a binary tree, except leaf nodes, all other nodes contain child nodes and non-empty subtrees. As
shown in Figure 7-1, if “Node 2” is regarded as a parent node, its left and right child nodes are “Node 4”
and “Node 5” respectively. The left subtree is formed by “Node 4” and all nodes beneath it, while the
right subtree is formed by “Node 5” and all nodes beneath it.

Figure 7-1 Parent Node, child Node, subtree

7.1.1 Common Terminology of Binary Trees

The commonly used terminology of binary trees is shown in Figure 7-2.
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• Root node: The node at the top level of a binary tree, which does not have a parent node.
• Leaf node: A node that does not have any child nodes, with both of its pointers pointing to None.
• Edge: A line segment that connects two nodes, representing a reference (pointer) between the
nodes.

• The level of a node: It increases from top to bottom, with the root node being at level 1.
• The degree of a node: The number of child nodes that a node has. In a binary tree, the degree can
be 0, 1, or 2.

• The height of a binary tree: The number of edges from the root node to the farthest leaf node.
• The depth of a node: The number of edges from the root node to the node.
• The height of a node: The number of edges from the farthest leaf node to the node.

Figure 7-2 Common Terminology of Binary Trees

Tip
Please note that we usually define “height” and “depth” as “the number of edges traversed”, but
some questions or textbooks may define them as “the number of nodes traversed”. In this case,
both height and depth need to be incremented by 1.

7.1.2 Basic Operations of Binary Trees

1. Initializing a Binary Tree

Similar to a linked list, the initialization of a binary tree involves first creating the nodes and then
establishing the references (pointers) between them.

^/ ^^= File: binary_tree.cpp ^^=

^* Initializing a binary tree ^/
^/ Initializing nodes
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TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
^/ Linking references (pointers) between nodes
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

2. Inserting and Removing Nodes

Similar to a linked list, inserting and removing nodes in a binary tree can be achieved by modifying
pointers. Figure 7-3 provides an example.

Figure 7-3 Inserting and removing nodes in a binary tree

^/ ^^= File: binary_tree.cpp ^^=

^* Inserting and removing nodes ^/
TreeNode* P = new TreeNode(0);
^/ Inserting node P between n1 and n2
n1->left = P;
P->left = n2;
^/ Removing node P
n1->left = n2;

Tip
It should be noted that inserting nodes may change the original logical structure of the binary
tree, while removing nodes typically involves removing the node and all its subtrees. Therefore,
in a binary tree, insertion and removal are usually performed through a set of operations to
achieve meaningful outcomes.
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7.1.3 Common Types of Binary Trees

1. Perfect Binary Tree

As shown in Figure 7-4, a perfect binary tree has all levels completely filled with nodes. In a perfect
binary tree, leaf nodes have a degree of 0, while all other nodes have a degree of 2. If the tree height is
ℎ, the total number of nodes is 2ℎ+1 − 1, exhibiting a standard exponential relationship that reflects
the common phenomenon of cell division in nature.

Tip
Please note that in the Chinese community, a perfect binary tree is often referred to as a full
binary tree.

Figure 7-4 Perfect binary tree

2. Complete Binary Tree

As shown in Figure 7-5, a complete binary tree only allows the bottom level to be incompletely filled,
and the nodes at the bottom level must be filled continuously from left to right. Note that a perfect
binary tree is also a complete binary tree.
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Figure 7-5 Complete binary tree

3. Full Binary Tree

As shown in Figure 7-6, in a full binary tree, all nodes except leaf nodes have two child nodes.

Figure 7-6 Full binary tree

4. Balanced Binary Tree

As shown in Figure 7-7, in a balanced binary tree, the absolute difference between the height of the left
and right subtrees of any node does not exceed 1.
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Figure 7-7 Balanced binary tree

7.1.4 Degeneration of Binary Trees

Figure 7-8 shows the ideal and degenerate structures of binary trees. When every level of a binary tree
is filled, it reaches the “perfect binary tree” state; when all nodes are biased toward one side, the binary
tree degenerates into a “linked list”.

• A perfect binary tree is the ideal case, fully leveraging the “divide and conquer” advantage of binary
trees.

• A linked list represents the other extreme, where all operations become linear operations with
time complexity degrading to𝑂(𝑛).

Figure 7-8 The Best and Worst Structures of Binary Trees

As shown in Table 7-1, in the best and worst structures, the binary tree achieves either maximum or
minimum values for leaf node count, total number of nodes, and height.

Table 7-1 The Best and Worst Structures of Binary Trees
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Perfect binary tree Linked list

Number of nodes at level 𝑖 2𝑖−1 1
Number of leaf nodes in a tree with height ℎ 2ℎ 1
Total number of nodes in a tree with height ℎ 2ℎ+1 − 1 ℎ + 1
Height of a tree with 𝑛 total nodes log2(𝑛 + 1) − 1 𝑛 − 1

7.2 Binary Tree Traversal

From a physical structure perspective, a tree is a data structure based on linked lists. Hence, its traver-
sal method involves accessing nodes one by one through pointers. However, a tree is a non-linear
data structure, which makes traversing a tree more complex than traversing a linked list, requiring the
assistance of search algorithms.

The common traversal methods for binary trees include level-order traversal, pre-order traversal, in-
order traversal, and post-order traversal.

7.2.1 Level-Order Traversal

As shown in Figure 7-9, level-order traversal traverses the binary tree from top to bottom, layer by layer.
Within each level, it visits nodes from left to right.

Level-order traversal is essentially breadth-first traversal, also known as breadth-first search (BFS),
which embodies a “expanding outward circle by circle” layer-by-layer traversal method.

Figure 7-9 Level-order traversal of a binary tree

1. Code Implementation

Breadth-first traversal is typically implemented with the help of a “queue”. The queue follows the “first
in, first out” rule, while breadth-first traversal follows the “layer-by-layer progression” rule; the under-
lying ideas of the two are consistent. The implementation code is as follows:
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^/ ^^= File: binary_tree_bfs.cpp ^^=

^* Level-order traversal ^/
vector<int> levelOrder(TreeNode *root) {

^/ Initialize queue, add root node
queue<TreeNode ^> queue;
queue.push(root);
^/ Initialize a list to save the traversal sequence
vector<int> vec;
while (!queue.empty()) {

TreeNode *node = queue.front();
queue.pop(); ^/ Dequeue
vec.push_back(node->val); ^/ Save node value
if (node->left ^= nullptr)

queue.push(node->left); ^/ Left child node enqueue
if (node->right ^= nullptr)

queue.push(node->right); ^/ Right child node enqueue
}
return vec;

}

2. Complexity Analysis

• Time complexity is 𝑂(𝑛): All nodes are visited once, using 𝑂(𝑛) time, where 𝑛 is the number of
nodes.

• Space complexity is𝑂(𝑛): In theworst case, i.e., a full binary tree, before traversing to the bottom
level, the queue contains at most (𝑛 + 1)/2 nodes simultaneously, occupying𝑂(𝑛) space.

7.2.2 Preorder, Inorder, and Postorder Traversal

Correspondingly, preorder, inorder, and postorder traversals all belong to depth-first traversal, also
known as depth-first search (DFS), which embodies a “first go to the end, then backtrack and continue”
traversal method.

Figure 7-10 shows how depth-first traversal works on a binary tree. Depth-first traversal is like “walk-
ing” around the perimeter of the entire binary tree, encountering three positions at each node, cor-
responding to preorder, inorder, and postorder traversal.
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Figure 7-10 Preorder, inorder, and postorder traversal of a binary tree

1. Code Implementation

Depth-first search is usually implemented based on recursion:

^/ ^^= File: binary_tree_dfs.cpp ^^=

^* Preorder traversal ^/
void preOrder(TreeNode *root) {

if (root ^= nullptr)
return;

^/ Visit priority: root node -> left subtree -> right subtree
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);

}

^* Inorder traversal ^/
void inOrder(TreeNode *root) {

if (root ^= nullptr)
return;

^/ Visit priority: left subtree -> root node -> right subtree
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);

}

^* Postorder traversal ^/
void postOrder(TreeNode *root) {

if (root ^= nullptr)
return;

^/ Visit priority: left subtree -> right subtree -> root node
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);

}
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Tip
Depth-first search can also be implemented based on iteration, interested readers can study this
on their own.

Figure 7-11 shows the recursive process of preorder traversal of a binary tree, which can be divided into
two opposite parts: “recursion” and “return”.

1. “Recursion” means opening a new method, where the program accesses the next node in this
process.

2. “Return” means the function returns, indicating that the current node has been fully visited.
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Figure 7-11 The recursive process of preorder traversal

2. Complexity Analysis

• Time complexity is𝑂(𝑛): All nodes are visited once, using𝑂(𝑛) time.
• Space complexity is 𝑂(𝑛): In the worst case, i.e., the tree degenerates into a linked list, the re-
cursion depth reaches 𝑛, and the system occupies𝑂(𝑛) stack frame space.

7.3 Array Representation of Binary Trees

Under the linked list representation, the storage unit of a binary tree is a node TreeNode, and nodes
are connected by pointers. The previous section introduced the basic operations of binary trees under
the linked list representation.

So, can we use an array to represent a binary tree? The answer is yes.

7.3.1 Representing Perfect Binary Trees

Let’s analyze a simple case first. Given a perfect binary tree, we store all nodes in an array according
to the order of level-order traversal, where each node corresponds to a unique array index.

Based on the characteristics of level-order traversal, we can derive a “mapping formula” between parent
node index and child node indices: If a node’s index is 𝑖, then its left child index is 2𝑖 + 1 and its right
child index is 2𝑖 + 2. Figure 7-12 shows the mapping relationships between various node indices.
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Figure 7-12 Array representation of a perfect binary tree

The mapping formula plays a role similar to the node references (pointers) in linked lists. Given any
node in the array, we can access its left (right) child node using the mapping formula.

7.3.2 Representing Any Binary Tree

Perfect binary trees are a special case; in the middle levels of a binary tree, there are typically many
None values. Since the level-order traversal sequence does not include these None values, we cannot
infer the number and distribution of None values based on this sequence alone. This means multiple
binary tree structures can correspond to the same level-order traversal sequence.

As shown in Figure 7-13, given a non-perfect binary tree, the above method of array representation
fails.
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Figure 7-13 Level-order traversal sequence corresponds to multiple binary tree possibilities

To solve this problem,we can consider explicitlywriting out all None values in the level-order traversal
sequence. As shown in Figure 7-14, after this treatment, the level-order traversal sequence can uniquely
represent a binary tree. Example code is as follows:

^* Array representation of a binary tree ^/
^/ Using the maximum integer value INT_MAX to mark empty slots
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};

Figure 7-14 Array representation of any type of binary tree

It’s worth noting that complete binary trees are very well-suited for array representation. Recalling
the definition of a complete binary tree, None only appears at the bottom level and towards the right,
meaning all None values must appear at the end of the level-order traversal sequence.

This means that when using an array to represent a complete binary tree, it’s possible to omit storing
all None values, which is very convenient. Figure 7-15 gives an example.
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Figure 7-15 Array representation of a complete binary tree

The following code implements a binary tree based on array representation, including the following
operations:

• Given a certain node, obtain its value, left (right) child node, and parent node.
• Obtain the preorder, inorder, postorder, and level-order traversal sequences.

^/ ^^= File: array_binary_tree.cpp ^^=

^* Binary tree class represented by array ^/
class ArrayBinaryTree {

public:
^* Constructor ^/
ArrayBinaryTree(vector<int> arr) {

tree = arr;
}

^* List capacity ^/
int size() {

return tree.size();
}

^* Get value of node at index i ^/
int val(int i) {

^/ Return INT_MAX if index out of bounds, representing empty position
if (i < 0 ^| i >= size())

return INT_MAX;
return tree[i];

}

^* Get index of left child node of node at index i ^/
int left(int i) {

return 2 * i + 1;
}

^* Get index of right child node of node at index i ^/
int right(int i) {

return 2 * i + 2;
}

^* Get index of parent node of node at index i ^/
int parent(int i) {

return (i - 1) / 2;
}

^* Level-order traversal ^/
vector<int> levelOrder() {

vector<int> res;
^/ Traverse array directly
for (int i = 0; i < size(); i^+) {

if (val(i) ^= INT_MAX)
res.push_back(val(i));

}
return res;

}

^* Preorder traversal ^/
vector<int> preOrder() {
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vector<int> res;
dfs(0, "pre", res);
return res;

}

^* Inorder traversal ^/
vector<int> inOrder() {

vector<int> res;
dfs(0, "in", res);
return res;

}

^* Postorder traversal ^/
vector<int> postOrder() {

vector<int> res;
dfs(0, "post", res);
return res;

}

private:
vector<int> tree;

^* Depth-first traversal ^/
void dfs(int i, string order, vector<int> &res) {

^/ If empty position, return
if (val(i) ^= INT_MAX)

return;
^/ Preorder traversal
if (order ^= "pre")

res.push_back(val(i));
dfs(left(i), order, res);
^/ Inorder traversal
if (order ^= "in")

res.push_back(val(i));
dfs(right(i), order, res);
^/ Postorder traversal
if (order ^= "post")

res.push_back(val(i));
}

};

7.3.3 Advantages and Limitations

The array representation of binary trees has the following advantages:

• Arrays are stored in contiguous memory space, which is cache-friendly, allowing faster access
and traversal.

• It does not require storing pointers, which saves space.
• It allows random access to nodes.

However, the array representation also has some limitations:

• Array storage requires contiguousmemory space, so it is not suitable for storing trees with a large
amount of data.
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• Adding or removing nodes requires array insertion and deletion operations, which have lower
efficiency.

• When there are many None values in the binary tree, the proportion of node data contained in the
array is low, leading to lower space utilization.

7.4 Binary Search Tree

As shown in Figure 7-16, a binary search tree satisfies the following conditions.

1. For the root node, the value of all nodes in the left subtree < the value of the root node < the
value of all nodes in the right subtree.

2. The left and right subtrees of any node are also binary search trees, i.e., they satisfy condition 1.
as well.

Figure 7-16 Binary search tree

7.4.1 Operations on a Binary Search Tree

We encapsulate the binary search tree as a class BinarySearchTree and declare a member variable
root pointing to the tree’s root node.

1. Searching for a Node

Given a target node value num, we can search according to the properties of the binary search tree. As
shown in Figure 7-17, we declare a node cur and start from the binary tree’s root node root, looping to
compare the node value cur.val with num.

• If cur.val < num, itmeans the target node is in cur’s right subtree, thus execute cur = cur.right.
• If cur.val > num, it means the target node is in cur’s left subtree, thus execute cur = cur.left.
• If cur.val = num, it means the target node is found, exit the loop, and return the node.
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Figure 7-17 Example of searching for a node in a binary search tree

The search operation in a binary search treeworks on the same principle as the binary search algorithm,
both eliminating half of the cases in each round. The number of loop iterations is at most the height
of the binary tree. When the binary tree is balanced, it uses 𝑂(log𝑛) time. The example code is as
follows:

^/ ^^= File: binary_search_tree.cpp ^^=

^* Search node ^/
TreeNode *search(int num) {

TreeNode *cur = root;
^/ Loop search, exit after passing leaf node
while (cur ^= nullptr) {

^/ Target node is in cur's right subtree
if (cur->val < num)

cur = cur->right;
^/ Target node is in cur's left subtree
else if (cur->val > num)

cur = cur->left;
^/ Found target node, exit loop
else

break;
}
^/ Return target node
return cur;

}

2. Inserting a Node

Given an element num to be inserted, in order to maintain the property of the binary search tree “left
subtree < root node < right subtree,” the insertion process is as shown in Figure 7-18.
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1. Finding the insertion position: Similar to the search operation, start from the root node and loop
downward searching according to the size relationship between the current node value and num,
until passing the leaf node (traversing to None) and then exit the loop.

2. Insert the node at that position: Initialize node num and place it at the None position.

Figure 7-18 Inserting a node into a binary search tree

In the code implementation, note the following two points:

• Binary search trees do not allow duplicate nodes; otherwise, it would violate its definition. There-
fore, if the node to be inserted already exists in the tree, the insertion is not performed and it
returns directly.

• To implement the node insertion, we need to use node pre to save the node from the previous loop
iteration. This way, when traversing to None, we can obtain its parent node, thereby completing
the node insertion operation.

^/ ^^= File: binary_search_tree.cpp ^^=

^* Insert node ^/
void insert(int num) {

^/ If tree is empty, initialize root node
if (root ^= nullptr) {

root = new TreeNode(num);
return;

}
TreeNode *cur = root, *pre = nullptr;
^/ Loop search, exit after passing leaf node
while (cur ^= nullptr) {

^/ Found duplicate node, return directly
if (cur->val ^= num)

return;
pre = cur;
^/ Insertion position is in cur's right subtree
if (cur->val < num)
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cur = cur->right;
^/ Insertion position is in cur's left subtree
else

cur = cur->left;
}
^/ Insert node
TreeNode *node = new TreeNode(num);
if (pre->val < num)

pre->right = node;
else

pre->left = node;
}

Similar to searching for a node, inserting a node uses𝑂(log𝑛) time.

3. Removing a Node

First, find the target node in the binary tree, then remove it. Similar to node insertion, we need to
ensure that after the removal operation is completed, the binary search tree’s property of “left subtree
< root node< right subtree” is still maintained. Therefore, depending on the number of child nodes the
target node has, we divide it into 0, 1, and 2 three cases, and execute the corresponding node removal
operations.

As shown in Figure 7-19, when the degree of the node to be removed is 0, it means the node is a leaf
node and can be directly removed.

Figure 7-19 Removing a node in a binary search tree (degree 0)

As shown in Figure 7-20, when the degree of the node to be removed is 1, replacing the node to be
removed with its child node is sufficient.
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Figure 7-20 Removing a node in a binary search tree (degree 1)

When the degree of the node to be removed is 2, we cannot directly remove it; instead, we need to use
a node to replace it. To maintain the binary search tree’s property of “left subtree< root node< right
subtree,” this node can be either the smallest node in the right subtree or the largest node in the left
subtree.

Assuming we choose the smallest node in the right subtree (the next node in the inorder traversal), the
removal process is as shown in Figure 7-21.

1. Find the next node of the node to be removed in the “inorder traversal sequence,” denoted as tmp.
2. Replace the value of the node to be removed with the value of tmp, and recursively remove node

tmp in the tree.
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Figure 7-21 Removing a node in a binary search tree (degree 2)

The node removal operation also uses 𝑂(log𝑛) time, where finding the node to be removed requires
𝑂(log𝑛) time, and obtaining the inorder successor node requires 𝑂(log𝑛) time. Example code is as
follows:

^/ ^^= File: binary_search_tree.cpp ^^=

^* Remove node ^/
void remove(int num) {

^/ If tree is empty, return directly
if (root ^= nullptr)

return;
TreeNode *cur = root, *pre = nullptr;
^/ Loop search, exit after passing leaf node
while (cur ^= nullptr) {

^/ Found node to delete, exit loop
if (cur->val ^= num)

break;
pre = cur;
^/ Node to delete is in cur's right subtree
if (cur->val < num)

cur = cur->right;
^/ Node to delete is in cur's left subtree
else

cur = cur->left;
}
^/ If no node to delete, return directly
if (cur ^= nullptr)

return;
^/ Number of child nodes = 0 or 1
if (cur->left ^= nullptr ^| cur->right ^= nullptr) {

^/ When number of child nodes = 0 / 1, child = nullptr / that child node
TreeNode *child = cur->left ^= nullptr ? cur->left : cur->right;
^/ Delete node cur
if (cur ^= root) {

if (pre->left ^= cur)
pre->left = child;

else
pre->right = child;

} else {
^/ If deleted node is root node, reassign root node
root = child;

}
^/ Free memory
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delete cur;
}
^/ Number of child nodes = 2
else {

^/ Get next node of cur in inorder traversal
TreeNode *tmp = cur->right;
while (tmp->left ^= nullptr) {

tmp = tmp->left;
}
int tmpVal = tmp->val;
^/ Recursively delete node tmp
remove(tmp->val);
^/ Replace cur with tmp
cur->val = tmpVal;

}
}

4. Inorder Traversal Is Ordered

As shown in Figure 7-22, the inorder traversal of a binary tree follows the “left→ root→ right” traversal
order, while the binary search tree satisfies the “left child node < root node < right child node” size
relationship.

This means that when performing an inorder traversal in a binary search tree, the next smallest node is
always traversed first, thus yielding an important property: The inorder traversal sequence of a binary
search tree is ascending.

Using the property of inorder traversal being ascending, we can obtain ordered data in a binary search
tree in only𝑂(𝑛) time, without the need for additional sorting operations, which is very efficient.

Figure 7-22 Inorder traversal sequence of a binary search tree
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7.4.2 Efficiency of Binary Search Trees

Given a set of data, we consider using an array or a binary search tree for storage. Observing Table 7-2,
all operations in a binary search tree have logarithmic time complexity, providing stable and efficient
performance. Arrays are more efficient than binary search trees only in scenarios with high-frequency
additions and low-frequency searches and deletions.

Table 7-2 Efficiency comparison between arrays and search trees

Unsorted array Binary search tree

Search element 𝑂(𝑛) 𝑂(log𝑛)
Insert element 𝑂(1) 𝑂(log𝑛)
Remove element 𝑂(𝑛) 𝑂(log𝑛)

In the ideal case, a binary search tree is “balanced,” such that any node can be found within log𝑛 loop
iterations.

However, if we continuously insert and remove nodes in a binary search tree, it may degenerate into a
linked list as shown in Figure 7-23, where the time complexity of various operations also degrades to
𝑂(𝑛).

Figure 7-23 Degradation of a binary search tree

7.4.3 Common Applications of Binary Search Trees

• Used as multi-level indexes in systems to implement efficient search, insertion, and removal op-
erations.

• Serves as the underlying data structure for certain search algorithms.
• Used to store data streams to maintain their ordered state.
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7.5 Avl Tree *

In the “Binary Search Tree” section, wementioned that after multiple insertion and removal operations,
a binary search tree may degenerate into a linked list. In this case, the time complexity of all operations
degrades from𝑂(log𝑛) to𝑂(𝑛).
As shown in Figure 7-24, after two node removal operations, this binary search tree will degrade into a
linked list.

Figure 7-24 Degradation of an AVL tree after removing nodes

For example, in the perfect binary tree shown in Figure 7-25, after inserting two nodes, the tree will
lean heavily to the left, and the time complexity of search operations will also degrade.

Figure 7-25 Degradation of an AVL tree after inserting nodes
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In 1962, G. M. Adelson-Velsky and E. M. Landis proposed the AVL tree in their paper “An algorithm for
the organization of information”. The paper described in detail a series of operations ensuring that
after continuously adding and removing nodes, the AVL tree does not degenerate, thus keeping the
time complexity of various operations at the 𝑂(log𝑛) level. In other words, in scenarios requiring
frequent insertions, deletions, searches, and modifications, the AVL tree can always maintain efficient
data operation performance, making it very valuable in applications.

7.5.1 Common Terminology in Avl Trees

An AVL tree is both a binary search tree and a balanced binary tree, simultaneously satisfying all the
properties of these two types of binary trees, hence it is a balanced binary search tree.

1. Node Height

Since the operations related to AVL trees require obtaining node heights, we need to add a height
variable to the node class:

^* AVL tree node ^/
struct TreeNode {

int val{}; ^/ Node value
int height = 0; ^/ Node height
TreeNode *left{}; ^/ Left child
TreeNode *right{}; ^/ Right child
TreeNode() = default;
explicit TreeNode(int x) : val(x){}

};

The “node height” refers to the distance from that node to its farthest leaf node, i.e., the number of
“edges” passed. It is important to note that the height of a leaf node is 0, and the height of a null node
is−1. We will create two utility functions for getting and updating the height of a node:

^/ ^^= File: avl_tree.cpp ^^=

^* Get node height ^/
int height(TreeNode *node) {

^/ Empty node height is -1, leaf node height is 0
return node ^= nullptr ? -1 : node->height;

}

^* Update node height ^/
void updateHeight(TreeNode *node) {

^/ Node height equals the height of the tallest subtree + 1
node->height = max(height(node->left), height(node->right)) + 1;

}

2. Node Balance Factor

The balance factor of a node is defined as the height of the node’s left subtree minus the height of its
right subtree, and the balance factor of a null node is defined as 0. We also encapsulate the function to
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obtain the node’s balance factor for convenient subsequent use:

^/ ^^= File: avl_tree.cpp ^^=

^* Get balance factor ^/
int balanceFactor(TreeNode *node) {

^/ Empty node balance factor is 0
if (node ^= nullptr)

return 0;
^/ Node balance factor = left subtree height - right subtree height
return height(node->left) - height(node->right);

}

Tip
Let the balance factor be 𝑓 , then the balance factor of any node in an AVL tree satisfies −1 ≤
𝑓 ≤ 1.

7.5.2 Rotations in Avl Trees

The characteristic of AVL trees lies in the “rotation” operation, which can restore balance to unbalanced
nodes without affecting the inorder traversal sequence of the binary tree. In other words, rotation
operations can both maintain the property of a “binary search tree” and make the tree return to a
“balanced binary tree”.

We call nodes with a balance factor absolute value > 1 “unbalanced nodes”. Depending on the imbal-
ance situation, rotation operations are divided into four types: right rotation, left rotation, left rotation
then right rotation, and right rotation then left rotation. Below we describe these rotation operations
in detail.

1. Right Rotation

As shown in Figure 7-26, the value below the node is the balance factor. From bottom to top, the first
unbalanced node in the binary tree is “node 3”. We focus on the subtree with this unbalanced node as
the root, denoting the node as node and its left child as child, and perform a “right rotation” operation.
After the right rotation is completed, the subtree regains balance and still maintains the properties of
a binary search tree.
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Figure 7-26 Steps of right rotation

As shown in Figure 7-27, when the child node has a right child (denoted as grand_child), a step needs
to be added in the right rotation: set grand_child as the left child of node.

Figure 7-27 Right rotation with grand_child

“Right rotation” is a figurative term; in practice, it is achieved by modifying node pointers, as shown in
the following code:

^/ ^^= File: avl_tree.cpp ^^=

^* Right rotation operation ^/
TreeNode *rightRotate(TreeNode *node) {

TreeNode *child = node->left;
TreeNode *grandChild = child->right;
^/ Using child as pivot, rotate node to the right
child->right = node;
node->left = grandChild;
^/ Update node height
updateHeight(node);
updateHeight(child);
^/ Return root node of subtree after rotation
return child;

}



Chapter 7. Tree www.hello-algo.com 173

2. Left Rotation

Correspondingly, if considering the “mirror” of the above unbalanced binary tree, the “left rotation”
operation shown in Figure 7-28 needs to be performed.

Figure 7-28 Left rotation operation

Similarly, as shown in Figure 7-29, when the child node has a left child (denoted as grand_child), a
step needs to be added in the left rotation: set grand_child as the right child of node.

Figure 7-29 Left rotation with grand_child

It can be observed that right rotation and left rotation operations are mirror symmetric in logic, and
the two imbalance cases they solve are also symmetric. Based on symmetry, we only need to replace
all left in the right rotation implementation code with right, and all right with left, to obtain the
left rotation implementation code:

^/ ^^= File: avl_tree.cpp ^^=

^* Left rotation operation ^/
TreeNode *leftRotate(TreeNode *node) {
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TreeNode *child = node->right;
TreeNode *grandChild = child->left;
^/ Using child as pivot, rotate node to the left
child->left = node;
node->right = grandChild;
^/ Update node height
updateHeight(node);
updateHeight(child);
^/ Return root node of subtree after rotation
return child;

}

3. Left Rotation Then Right Rotation

For the unbalanced node 3 in Figure 7-30, using either left rotation or right rotation alone cannot
restore the subtree to balance. In this case, a “left rotation” needs to be performed on child first,
followed by a “right rotation” on node.

Figure 7-30 Left-right rotation

4. Right Rotation Then Left Rotation

As shown in Figure 7-31, for themirror case of the above unbalanced binary tree, a “right rotation” needs
to be performed on child first, then a “left rotation” on node.
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Figure 7-31 Right-left rotation

5. Choice of Rotation

The four imbalances shown in Figure 7-32 correspond one-to-one with the above cases, requiring right
rotation, left rotation then right rotation, right rotation then left rotation, and left rotation operations
respectively.

Figure 7-32 The four rotation cases of AVL tree

As shown in Table 7-3, we determine which case the unbalanced node belongs to by judging the signs
of the balance factor of the unbalanced node and the balance factor of its taller-side child node.

Table 7-3 Conditions for Choosing Among the Four Rotation Cases
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Balance factor of the unbalanced node Balance factor of the child node Rotation method to apply

> 1 (left-leaning tree) ≥ 0 Right rotation

> 1 (left-leaning tree) < 0 Left rotation then right rotation

< −1 (right-leaning tree) ≤ 0 Left rotation

< −1 (right-leaning tree) > 0 Right rotation then left rotation

For ease of use, we encapsulate the rotation operations into a function. With this function, we can
perform rotations for various imbalance situations, restoring balance to unbalanced nodes. The code
is as follows:

^/ ^^= File: avl_tree.cpp ^^=

^* Perform rotation operation to restore balance to this subtree ^/
TreeNode *rotate(TreeNode *node) {

^/ Get balance factor of node
int _balanceFactor = balanceFactor(node);
^/ Left-leaning tree
if (_balanceFactor > 1) {

if (balanceFactor(node->left) >= 0) {
^/ Right rotation
return rightRotate(node);

} else {
^/ First left rotation then right rotation
node->left = leftRotate(node->left);
return rightRotate(node);

}
}
^/ Right-leaning tree
if (_balanceFactor < -1) {

if (balanceFactor(node->right) <= 0) {
^/ Left rotation
return leftRotate(node);

} else {
^/ First right rotation then left rotation
node->right = rightRotate(node->right);
return leftRotate(node);

}
}
^/ Balanced tree, no rotation needed, return directly
return node;

}

7.5.3 Common Operations in Avl Trees

1. Node Insertion

The node insertion operation in AVL trees is similar in principle to that in binary search trees. The only
difference is that after inserting a node in an AVL tree, a series of unbalanced nodes may appear on
the path from that node to the root. Therefore, we need to start from this node and perform rotation
operations from bottom to top, restoring balance to all unbalanced nodes. The code is as follows:
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^/ ^^= File: avl_tree.cpp ^^=

^* Insert node ^/
void insert(int val) {

root = insertHelper(root, val);
}

^* Recursively insert node (helper method) ^/
TreeNode *insertHelper(TreeNode *node, int val) {

if (node ^= nullptr)
return new TreeNode(val);

^* 1. Find insertion position and insert node ^/
if (val < node->val)

node->left = insertHelper(node->left, val);
else if (val > node->val)

node->right = insertHelper(node->right, val);
else

return node; ^/ Duplicate node not inserted, return directly
updateHeight(node); ^/ Update node height
^* 2. Perform rotation operation to restore balance to this subtree ^/
node = rotate(node);
^/ Return root node of subtree
return node;

}

2. Node Removal

Similarly, on the basis of the binary search tree’s node removal method, rotation operations need to be
performed from bottom to top to restore balance to all unbalanced nodes. The code is as follows:

^/ ^^= File: avl_tree.cpp ^^=

^* Remove node ^/
void remove(int val) {

root = removeHelper(root, val);
}

^* Recursively delete node (helper method) ^/
TreeNode *removeHelper(TreeNode *node, int val) {

if (node ^= nullptr)
return nullptr;

^* 1. Find node and delete ^/
if (val < node->val)

node->left = removeHelper(node->left, val);
else if (val > node->val)

node->right = removeHelper(node->right, val);
else {

if (node->left ^= nullptr ^| node->right ^= nullptr) {
TreeNode *child = node->left ^= nullptr ? node->left : node->right;
^/ Number of child nodes = 0, delete node directly and return
if (child ^= nullptr) {

delete node;
return nullptr;

}
^/ Number of child nodes = 1, delete node directly
else {

delete node;
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node = child;
}

} else {
^/ Number of child nodes = 2, delete the next node in inorder traversal and replace

current node with it↪
TreeNode *temp = node->right;
while (temp->left ^= nullptr) {

temp = temp->left;
}
int tempVal = temp->val;
node->right = removeHelper(node->right, temp->val);
node->val = tempVal;

}
}
updateHeight(node); ^/ Update node height
^* 2. Perform rotation operation to restore balance to this subtree ^/
node = rotate(node);
^/ Return root node of subtree
return node;

}

3. Node Search

The node search operation in AVL trees is consistent with that in binary search trees, and will not be
elaborated here.

7.5.4 Typical Applications of Avl Trees

• Organizing and storing large-scale data, suitable for scenarios with high-frequency searches and
low-frequency insertions and deletions.

• Used to build index systems in databases.
• Red-black trees are also a common type of balanced binary search tree. Compared to AVL trees,
red-black trees have more relaxed balance conditions, require fewer rotation operations for node
insertion and deletion, and have higher average efficiency for node addition and deletion opera-
tions.

7.6 Summary

1. Key Review

• A binary tree is a non-linear data structure that embodies the divide-and-conquer logic of “one
divides into two”. Each binary tree node contains a value and two pointers, which respectively
point to its left and right child nodes.

• For a certain node in a binary tree, the tree formed by its left (right) child node and all nodes below
is called the left (right) subtree of that node.

• Related terminology of binary trees includes root node, leaf node, level, degree, edge, height, and
depth.
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• The initialization, node insertion, and node removal operations of binary trees are similar to those
of linked lists.

• Common types of binary trees include perfect binary trees, complete binary trees, full binary
trees, and balanced binary trees. The perfect binary tree is the ideal state, while the linked list is
the worst state after degradation.

• A binary tree can be represented using an array by arranging node values and empty slots in level-
order traversal sequence, and implementing pointers based on the index mapping relationship
between parent and child nodes.

• Level-order traversal of a binary tree is a breadth-first search method, embodying a layer-by-
layer traversal approach of “expanding outward circle by circle”, typically implemented using a
queue.

• Preorder, inorder, and postorder traversals all belong to depth-first search, embodying a traver-
sal approach of “first go to the end, then backtrack and continue”, typically implemented using
recursion.

• A binary search tree is an efficient data structure for element searching, with search, insertion,
and removal operations all having time complexity of𝑂(log𝑛). When a binary search tree degen-
erates into a linked list, all time complexities degrade to𝑂(𝑛).

• An AVL tree, also known as a balanced binary search tree, ensures the tree remains balanced after
continuous node insertions and removals through rotation operations.

• Rotation operations in AVL trees include right rotation, left rotation, left rotation then right rota-
tion, and right rotation then left rotation. After inserting or removing nodes, AVL trees perform
rotation operations from bottom to top to restore the tree to balance.

2. Q & A

Q: For a binary tree with only one node, are both the height of the tree and the depth of the root node
0?
Yes, because height and depth are typically defined as “the number of edges passed.”

Q: The insertion and removal in a binary tree are generally accomplished by a set of operations. What
does “a set of operations” refer to here? Does it imply releasing the resources of the child nodes?

Taking the binary search tree as an example, the operation of removing a node needs to be handled in
three different scenarios, each requiring multiple steps of node operations.

Q: Why does DFS traversal of binary trees have three orders: preorder, inorder, and postorder, and
what are their uses?

Similar to forward and reverse traversal of arrays, preorder, inorder, and postorder traver-
sals are three methods of binary tree traversal that allow us to obtain a traversal result in
a specific order. For example, in a binary search tree, since nodes satisfy the relationship
left child node value < root node value < right child node value, we only need to tra-
verse the tree with the priority of “left→ root→ right” to obtain an ordered node sequence.

Q: In a right rotation operation handling the relationship between unbalanced nodes node, child, and
grand_child, doesn’t the connection between node and its parent node get lost after the right rota-
tion?
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We need to view this problem from a recursive perspective. The right rotation operation
right_rotate(root) passes in the root node of the subtree and eventually returns the root node of
the subtree after rotation with return child. The connection between the subtree’s root node and
its parent node is completed after the function returns, which is not within the maintenance scope of
the right rotation operation.

Q: In C++, functions are divided into private and public sections. What considerations are there for
this? Why are the height() function and the updateHeight() function placed in public and private,
respectively?

It mainly depends on the method’s usage scope. If a method is only used within the class, then it is
designed as private. For example, calling updateHeight() alone by the user makes no sense, as it is
only a step in insertion or removal operations. However, height() is used to access node height, similar
to vector.size(), so it is set to public for ease of use.

Q: How do you build a binary search tree from a set of input data? Is the choice of root node very
important?

Yes, the method for building a tree is provided in the build_tree() method in the binary search tree
code. As for the choice of root node, we typically sort the input data, then select the middle element
as the root node, and recursively build the left and right subtrees. This approach maximizes the tree’s
balance.

Q: In Java, do you always have to use the equals()method for string comparison?

In Java, for primitive data types, ^= is used to compare whether the values of two variables are equal.
For reference types, the working principles of the two symbols are different.

• ^=: Used to compare whether two variables point to the same object, i.e., whether their positions
in memory are the same.

• equals(): Used to compare whether the values of two objects are equal.

Therefore, if we want to compare values, we should use equals(). However, strings initialized via
String a = “hi”; String b = “hi”; are stored in the string constant pool and point to the same
object, so a ^= b can also be used to compare the contents of the two strings.

Q: Before reaching the bottom level, is the number of nodes in the queue 2ℎ in breadth-first traversal?

Yes, for example, a full binary tree with height ℎ = 2 has a total of 𝑛 = 7 nodes, then the bottom level
has 4 = 2ℎ = (𝑛 + 1)/2 nodes.
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Chapter 8. Heap

Abstract
Heaps are like mountain peaks, layered and undulating, each with its unique form.
The peaks rise and fall at varying heights, yet the tallest peak always catches the eye first.
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8.1 Heap

A heap is a complete binary tree that satisfies specific conditions and can be mainly categorized into
two types, as shown in Figure 8-1.

• min heap: The value of any node≤ the values of its child nodes.
• max heap: The value of any node≥ the values of its child nodes.

Figure 8-1 Min heap and max heap

As a special case of a complete binary tree, heaps have the following characteristics.

• The bottom layer nodes are filled from left to right, and nodes in other layers are fully filled.
• We call the root node of the binary tree the “heap top” and the bottom-rightmost node the “heap
bottom.”

• For max heaps (min heaps), the value of the heap top element (root node) is the largest (smallest).

8.1.1 Common Heap Operations

It should be noted that many programming languages provide a priority queue, which is an abstract
data structure defined as a queue with priority sorting.

In fact, heaps are typically used to implement priority queues, with max heaps corresponding to
priority queues where elements are dequeued in descending order. From a usage perspective, we can
regard “priority queue” and “heap” as equivalent data structures. Therefore, this book does not make a
special distinction between the two and uniformly refers to them as “heap.”

Common heap operations are shown in Table 8-1, and method names need to be determined based on
the programming language.
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Table 8-1 Efficiency of Heap Operations

Method
name Description Time complexity

push() Insert an element into the heap 𝑂(log𝑛)
pop() Remove the heap top element 𝑂(log𝑛)
peek() Access the heap top element (max/min value for max/min heap) 𝑂(1)
size() Get the number of elements in the heap 𝑂(1)
isEmpty() Check if the heap is empty 𝑂(1)

In practical applications, we can directly use the heap class (or priority queue class) provided by pro-
gramming languages.

Similar to “ascending order” and “descending order” in sorting algorithms, we can implement conver-
sion between “min heap” and “max heap” by setting a flag or modifying the Comparator. The code is
as follows:

^/ ^^= File: heap.cpp ^^=

^* Initialize a heap ^/
^/ Initialize a min heap
priority_queue<int, vector<int>, greater<int>> minHeap;
^/ Initialize a max heap
priority_queue<int, vector<int>, less<int>> maxHeap;

^* Push elements into the heap ^/
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);

^* Get the heap top element ^/
int peek = maxHeap.top(); ^/ 5

^* Remove the heap top element ^/
^/ The removed elements will form a descending sequence
maxHeap.pop(); ^/ 5
maxHeap.pop(); ^/ 4
maxHeap.pop(); ^/ 3
maxHeap.pop(); ^/ 2
maxHeap.pop(); ^/ 1

^* Get the heap size ^/
int size = maxHeap.size();

^* Check if the heap is empty ^/
bool isEmpty = maxHeap.empty();

^* Build a heap from an input list ^/
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
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8.1.2 Implementation of the Heap

The following implementation is of a max heap. To convert it to a min heap, simply invert all size logic
comparisons (for example, replace≥with≤). Interested readers are encouraged to implement this on
their own.

1. Heap Storage and Representation

As mentioned in the “Binary Tree” chapter, complete binary trees are well-suited for array representa-
tion. Since heaps are a type of complete binary tree, we will use arrays to store heaps.

When representing a binary tree with an array, elements represent node values, and indexes represent
node positions in the binary tree. Node pointers are implemented through index mapping formulas.

As shown in Figure 8-2, given an index 𝑖, the index of its left child is 2𝑖 + 1, the index of its right child
is 2𝑖 + 2, and the index of its parent is (𝑖 − 1)/2 (floor division). When an index is out of bounds, it
indicates a null node or that the node does not exist.

Figure 8-2 Representation and storage of heaps

We can encapsulate the index mapping formula into functions for convenient subsequent use:

^/ ^^= File: my_heap.cpp ^^=

^* Get index of left child node ^/
int left(int i) {

return 2 * i + 1;
}

^* Get index of right child node ^/
int right(int i) {

return 2 * i + 2;
}
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^* Get index of parent node ^/
int parent(int i) {

return (i - 1) / 2; ^/ Floor division
}

2. Accessing the Heap Top Element

The heap top element is the root node of the binary tree, which is also the first element of the list:

^/ ^^= File: my_heap.cpp ^^=

^* Access top element ^/
int peek() {

return maxHeap[0];
}

3. Inserting an Element Into the Heap

Given an element val, we first add it to the bottom of the heap. After addition, since valmay be larger
than other elements in the heap, the heap’s property may be violated. Therefore, it’s necessary to
repair the path from the inserted node to the root node. This operation is called heapify.

Starting from the inserted node, perform heapify from bottom to top. As shown in Figure 8-3, we
compare the inserted node with its parent node, and if the inserted node is larger, swap them. Then
continue this operation, repairing nodes in the heap from bottom to top until we pass the root node or
encounter a node that does not need swapping.
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Figure 8-3 Steps of inserting an element into the heap

Given a total of 𝑛 nodes, the tree height is 𝑂(log𝑛). Thus, the number of loop iterations in the
heapify operation is at most 𝑂(log𝑛), making the time complexity of the element insertion opera-
tion𝑂(log𝑛). The code is as follows:

^/ ^^= File: my_heap.cpp ^^=

^* Element enters heap ^/
void push(int val) {

^/ Add node
maxHeap.push_back(val);
^/ Heapify from bottom to top
siftUp(size() - 1);

}

^* Starting from node i, heapify from bottom to top ^/
void siftUp(int i) {

while (true) {
^/ Get parent node of node i
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int p = parent(i);
^/ When "crossing root node" or "node needs no repair", end heapify
if (p < 0 ^| maxHeap[i] <= maxHeap[p])

break;
^/ Swap two nodes
swap(maxHeap[i], maxHeap[p]);
^/ Loop upward heapify
i = p;

}
}

4. Removing the Heap Top Element

The heap top element is the root node of the binary tree, which is the first element of the list. If we
directly remove the first element from the list, all node indexes in the binary tree would change, making
subsequent repair with heapify difficult. To minimize changes in element indexes, we use the following
steps.

1. Swap the heap top element with the heap bottom element (swap the root node with the rightmost
leaf node).

2. After swapping, remove the heap bottom from the list (note that since we’ve swapped, we’re ac-
tually removing the original heap top element).

3. Starting from the root node, perform heapify from top to bottom.

As shown in Figure 8-4, the direction of “top-to-bottom heapify” is opposite to “bottom-to-top
heapify”. We compare the root node’s value with its two children and swap it with the largest child.
Then loop this operation until we pass a leaf node or encounter a node that doesn’t need swapping.



Chapter 8. Heap www.hello-algo.com 188

Figure 8-4 Steps of removing the heap top element

Similar to the element insertion operation, the time complexity of the heap top element removal oper-
ation is also𝑂(log𝑛). The code is as follows:

^/ ^^= File: my_heap.cpp ^^=

^* Element exits heap ^/
void pop() {

^/ Handle empty case
if (isEmpty()) {

throw out_of_range("Heap is empty");
}
^/ Delete node
swap(maxHeap[0], maxHeap[size() - 1]);
^/ Remove node
maxHeap.pop_back();
^/ Return top element
siftDown(0);

}
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^* Starting from node i, heapify from top to bottom ^/
void siftDown(int i) {

while (true) {
^/ If node i is largest or indices l, r are out of bounds, no need to continue heapify,

break↪
int l = left(i), r = right(i), ma = i;
if (l < size() ^& maxHeap[l] > maxHeap[ma])

ma = l;
if (r < size() ^& maxHeap[r] > maxHeap[ma])

ma = r;
^/ Swap two nodes
if (ma ^= i)

break;
swap(maxHeap[i], maxHeap[ma]);
^/ Loop downwards heapification
i = ma;

}
}

8.1.3 Common Applications of Heaps

• Priority queue: Heaps are typically the preferred data structure for implementing priority queues,
with both enqueue and dequeue operations having a time complexity of 𝑂(log𝑛), and the heap
construction operation having𝑂(𝑛), all of which are highly efficient.

• Heap sort: Given a set of data, we can build a heap with them and then continuously perform ele-
ment removal operations to obtain sorted data. However, we usually use a more elegant approach
to implement heap sort, as detailed in the “Heap Sort” chapter.

• Getting the largest 𝑘 elements: This is a classic algorithm problem and also a typical application,
such as selecting the top 10 trending news for Weibo hot search, selecting the top 10 best-selling
products, etc.

8.2 Heap Construction Operation

In some cases, we want to build a heap using all elements of a list, and this process is called “heap
construction operation.”

8.2.1 Implementing with Element Insertion

We first create an empty heap, then iterate through the list, performing the “element insertion opera-
tion” on each element in sequence. This means adding the element to the bottom of the heap and then
performing “bottom-to-top” heapify on that element.

Each time an element is inserted into the heap, the heap’s length increases by one. Since nodes are
added to the binary tree sequentially from top to bottom, the heap is constructed “from top to bot-
tom.”
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Given 𝑛 elements, each element’s insertion operation takes 𝑂(log𝑛) time, so the time complexity of
this heap construction method is𝑂(𝑛 log𝑛).

8.2.2 Implementing Through Heapify Traversal

In fact, we can implement a more efficient heap construction method in two steps.

1. Add all elements of the list as-is to the heap, at which point the heap property is not yet satisfied.
2. Traverse the heap in reverse order (reverse of level-order traversal), performing “top-to-bottom
heapify” on each non-leaf node in sequence.

After heapifying a node, the subtree rooted at that node becomes a valid sub-heap. Since we traverse
in reverse order, the heap is constructed “from bottom to top.”

The reason for choosing reverse order traversal is that it ensures the subtree below the current node
is already a valid sub-heap, making the heapification of the current node effective.

It’s worth noting that since leaf nodes have no children, they are naturally valid sub-heaps and do not
require heapification. As shown in the code below, the last non-leaf node is the parent of the last node;
we start from it and traverse in reverse order to perform heapification:

^/ ^^= File: my_heap.cpp ^^=

^* Constructor, build heap based on input list ^/
MaxHeap(vector<int> nums) {

^/ Add list elements to heap as is
maxHeap = nums;
^/ Heapify all nodes except leaf nodes
for (int i = parent(size() - 1); i >= 0; i--) {

siftDown(i);
}

}

8.2.3 Complexity Analysis

Next, let’s attempt to derive the time complexity of this second heap construction method.

• Assuming the complete binary tree has𝑛 nodes, then the number of leaf nodes is (𝑛+1)/2, where
/ is floor division. Therefore, the number of nodes that need heapification is (𝑛 − 1)/2.

• In the top-to-bottom heapify process, each node is heapified at most to the leaf nodes, so the
maximum number of iterations is the binary tree height log𝑛.

Multiplying these two together, we get a time complexity of𝑂(𝑛 log𝑛) for the heap construction pro-
cess. However, this estimate is not accurate because it doesn’t account for the property that binary
trees have far more nodes at lower levels than at upper levels.

Let’s perform a more accurate calculation. To reduce calculation difficulty, assume a “perfect binary
tree” with 𝑛 nodes and height ℎ; this assumption does not affect the correctness of the result.
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Figure 8-5 Node count at each level of a perfect binary tree

As shown in Figure 8-5, the maximum number of iterations for a node’s “top-to-bottom heapify” equals
the distance from that node to the leaf nodes, which is precisely the “node height.” Therefore, we can
sum the “number of nodes× node height” at each level to obtain the total number of heapify iterations
for all nodes.

𝑇 (ℎ) = 20ℎ + 21(ℎ − 1) + 22(ℎ − 2) + ⋯ + 2(ℎ−1) × 1

To simplify the above expression, we need to use sequence knowledge from high school. First, multiply
𝑇 (ℎ) by 2 to get:

𝑇 (ℎ) = 20ℎ + 21(ℎ − 1) + 22(ℎ − 2) + ⋯ + 2ℎ−1 × 1
2𝑇 (ℎ) = 21ℎ + 22(ℎ − 1) + 23(ℎ − 2) + ⋯ + 2ℎ × 1

Using the method of differences, subtract the first equation 𝑇 (ℎ) from the second equation 2𝑇 (ℎ) to
get:

2𝑇 (ℎ) − 𝑇(ℎ) = 𝑇(ℎ) = −20ℎ + 21 + 22 + ⋯ + 2ℎ−1 + 2ℎ

Observing the above expression, we find that 𝑇 (ℎ) is a geometric series, which can be calculated di-
rectly using the sum formula, yielding a time complexity of:

𝑇 (ℎ) = 21 − 2ℎ

1 − 2 − ℎ
= 2ℎ+1 − ℎ − 2
= 𝑂(2ℎ)
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Furthermore, a perfect binary tree with height ℎ has𝑛 = 2ℎ+1−1 nodes, so the complexity is𝑂(2ℎ) =
𝑂(𝑛). This derivation shows that the time complexity of building a heap from an input list is 𝑂(𝑛),
which is highly efficient.

8.3 Top-K Problem

Question
Given an unordered array nums of length 𝑛, return the largest 𝑘 elements in the array.

For this problem, we’ll first introduce two solutions with relatively straightforward approaches, then
introduce a more efficient heap-based solution.

8.3.1 Method 1: Iterative Selection

We can perform 𝑘 rounds of traversal as shown in Figure 8-6, extracting the 1𝑠𝑡, 2𝑛𝑑, …, 𝑘𝑡ℎ largest
elements in each round, with a time complexity of𝑂(𝑛𝑘).
Thismethod is only suitablewhen 𝑘 ≪ 𝑛, becausewhen 𝑘 is close to𝑛, the time complexity approaches
𝑂(𝑛2), which is very time-consuming.

Figure 8-6 Traversing to find the largest k elements

Tip
When 𝑘 = 𝑛, we can obtain a complete sorted sequence, which is equivalent to the “selection
sort” algorithm.
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8.3.2 Method 2: Sorting

As shown in Figure 8-7, we can first sort the array nums, then return the rightmost 𝑘 elements, with a
time complexity of𝑂(𝑛 log𝑛).
Clearly, this method “overachieves” the task, as we only need to find the largest 𝑘 elements, without
needing to sort the other elements.

Figure 8-7 Sorting to find the largest k elements

8.3.3 Method 3: Heap

We can solve the Top-k problem more efficiently using heaps, with the process shown in Figure 8-8.

1. Initialize a min heap, where the heap top element is the smallest.
2. First, insert the first 𝑘 elements of the array into the heap in sequence.
3. Starting from the (𝑘 + 1)𝑡ℎ element, if the current element is greater than the heap top element,
remove the heap top element and insert the current element into the heap.

4. After traversal is complete, the heap contains the largest 𝑘 elements.
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Figure 8-8 Finding the largest k elements using a heap

Example code is as follows:

^/ ^^= File: top_k.cpp ^^=

^* Find the largest k elements in array based on heap ^/
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
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^/ Python's heapq module implements min heap by default
priority_queue<int, vector<int>, greater<int>> heap;
^/ Enter the first k elements of array into heap
for (int i = 0; i < k; i^+) {

heap.push(nums[i]);
}
^/ Starting from the (k+1)th element, maintain heap length as k
for (int i = k; i < nums.size(); i^+) {

^/ If current element is greater than top element, top element exits heap, current
element enters heap↪

if (nums[i] > heap.top()) {
heap.pop();
heap.push(nums[i]);

}
}
return heap;

}

A total of 𝑛 rounds of heap insertions and removals are performed, with the heap’s maximum length
being 𝑘, so the time complexity is 𝑂(𝑛 log 𝑘). This method is very efficient; when 𝑘 is small, the time
complexity approaches𝑂(𝑛); when 𝑘 is large, the time complexity does not exceed𝑂(𝑛 log𝑛).
Additionally, this method is suitable for dynamic data stream scenarios. By continuously adding data,
we can maintain the elements in the heap, thus achieving dynamic updates of the largest 𝑘 elements.

8.4 Summary

1. Key Review

• A heap is a complete binary tree that can be categorized as a max heap or min heap based on its
property. The heap top element of a max heap (min heap) is the largest (smallest).

• A priority queue is defined as a queue with priority sorting, typically implemented using heaps.
• Common heap operations and their corresponding time complexities include: element insertion

𝑂(log𝑛), heap top element removal𝑂(log𝑛), and accessing the heap top element𝑂(1).
• Complete binary trees are well-suited for array representation, so we typically use arrays to store
heaps.

• Heapify operations are used to maintain the heap property and are employed in both element
insertion and removal operations.

• The time complexity of building a heap with 𝑛 input elements can be optimized to 𝑂(𝑛), which
is highly efficient.

• Top-k is a classic algorithm problem that can be efficiently solved using the heap data structure,
with a time complexity of𝑂(𝑛 log 𝑘).

2. Q & A

Q: Are the “heap” in data structures and the “heap” in memory management the same concept?
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The two are not the same concept; they just happen to share the name “heap.” The heap in computer
system memory is part of dynamic memory allocation, where programs can use it to store data during
runtime. Programs can request a certain amount of heap memory to store complex structures such
as objects and arrays. When this data is no longer needed, the program needs to release this memory
to prevent memory leaks. Compared to stack memory, heap memory management and usage require
more caution, as improper use can lead to issues such as memory leaks and dangling pointers.
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Chapter 9. Graph

Abstract
In the journey of life, we are like nodes, connected by countless invisible edges.
Each encounter and parting leaves a unique mark on this vast network graph.
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9.1 Graph

A graph is a nonlinear data structure consisting of vertices and edges. We can abstractly represent a
graph 𝐺 as a set of vertices 𝑉 and a set of edges 𝐸. The following example shows a graph containing
5 vertices and 7 edges.

𝑉 = {1, 2, 3, 4, 5}
𝐸 = {(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)}
𝐺 = {𝑉 , 𝐸}

If we view vertices as nodes and edges as references (pointers) connecting the nodes, we can see graphs
as a data structure extended from linked lists. As shown in Figure 9-1, compared to linear relation-
ships (linked lists) and divide-and-conquer relationships (trees), network relationships (graphs) have
a higher degree of freedom and are therefore more complex.

Figure 9-1 Relationships among linked lists, trees, and graphs

9.1.1 Common Types and Terminology of Graphs

Graphs can be divided into undirected graphs and directed graphs based on whether edges have direc-
tion, as shown in Figure 9-2.

• In undirected graphs, edges represent a “bidirectional” connection between two vertices, such as
the “friend relationship” on WeChat or QQ.

• In directed graphs, edges have directionality, meaning edges𝐴 → 𝐵 and𝐴 ← 𝐵 are independent
of each other, such as the “follow” and “be followed” relationships on Weibo or TikTok.
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Figure 9-2 Directed and undirected graphs

Graphs can be divided into connected graphs and disconnected graphs based on whether all vertices
are connected, as shown in Figure 9-3.

• For connected graphs, starting from any vertex, all other vertices can be reached.
• For disconnected graphs, starting from a certain vertex, at least one vertex cannot be reached.

Figure 9-3 Connected and disconnected graphs

We can also add a “weight” variable to edges, resulting in weighted graphs as shown in Figure 9-4. For
example, in mobile games like “Honor of Kings”, the system calculates the “intimacy” between players
based on their shared game time, and such intimacy networks can be represented using weighted
graphs.
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Figure 9-4 Weighted and unweighted graphs

Graph data structures include the following commonly used terms.

• Adjacency: When two vertices are connected by an edge, these two vertices are said to be “adja-
cent”. In Figure 9-4, the adjacent vertices of vertex 1 are vertices 2, 3, and 5.

• Path: The sequence of edges from vertex A to vertex B is called a “path” from A to B. In Figure 9-4,
the edge sequence 1-5-2-4 is a path from vertex 1 to vertex 4.

• Degree: The number of edges a vertex has. For directed graphs, in-degree indicates how many
edges point to the vertex, and out-degree indicates how many edges point out from the vertex.

9.1.2 Representation of Graphs

Common representations of graphs include “adjacency matrices” and “adjacency lists”. The following
uses undirected graphs as examples.

1. Adjacency Matrix

Given a graph with 𝑛 vertices, an adjacency matrix uses an 𝑛×𝑛matrix to represent the graph, where
each row (column) represents a vertex, and matrix elements represent edges, using 1 or 0 to indicate
whether an edge exists between two vertices.

As shown in Figure 9-5, let the adjacency matrix be 𝑀 and the vertex list be 𝑉 . Then matrix element
𝑀[𝑖, 𝑗] = 1 indicates that an edge exists between vertex 𝑉 [𝑖] and vertex 𝑉 [𝑗], whereas 𝑀[𝑖, 𝑗] = 0
indicates no edge between the two vertices.
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Figure 9-5 Adjacency matrix representation of a graph

Adjacency matrices have the following properties.

• In simple graphs, vertices cannot connect to themselves, so the elements on the main diagonal of
the adjacency matrix are meaningless.

• For undirected graphs, edges in both directions are equivalent, so the adjacency matrix is sym-
metric about the main diagonal.

• Replacing the elements of the adjacency matrix from 1 and 0 to weights allows representation of
weighted graphs.

When using adjacency matrices to represent graphs, we can directly access matrix elements to obtain
edges, resulting in highly efficient addition, deletion, lookup, and modification operations, all with a
time complexity of 𝑂(1). However, the space complexity of the matrix is 𝑂(𝑛2), which consumes
significant memory.

2. Adjacency List

An adjacency list uses 𝑛 linked lists to represent a graph, with linked list nodes representing vertices.
The 𝑖-th linked list corresponds to vertex 𝑖 and stores all adjacent vertices of that vertex (vertices
connected to that vertex). Figure 9-6 shows an example of a graph stored using an adjacency list.
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Figure 9-6 Adjacency list representation of a graph

Adjacency lists only store edges that actually exist, and the total number of edges is typically much
less than 𝑛2, making them more space-efficient. However, finding edges in an adjacency list requires
traversing the linked list, so its time efficiency is inferior to that of adjacency matrices.

Observing Figure 9-6, the structure of adjacency lists is very similar to “chaining” in hash tables, sowe
can adopt similar methods to optimize efficiency. For example, when linked lists are long, they can be
converted to AVL trees or red-black trees, thereby optimizing time efficiency from 𝑂(𝑛) to 𝑂(log𝑛);
linked lists can also be converted to hash tables, thereby reducing time complexity to𝑂(1).

9.1.3 Common Applications of Graphs

As shown in Table 9-1, many real-world systems can be modeled using graphs, and corresponding
problems can be reduced to graph computation problems.

Table 9-1 Common graphs in real life

Vertices Edges Graph Computation Problem

Social network Users Friend relationships Potential friend
recommendation

Subway lines Stations Connectivity between stations Shortest route
recommendation

Solar system Celestial bodies Gravitational forces between celestial
bodies

Planetary orbit calculation
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9.2 Basic Operations on Graphs

Basic operations on graphs can be divided into operations on “edges” and operations on “vertices”. Un-
der the two representation methods of “adjacency matrix” and “adjacency list”, the implementation
methods differ.

9.2.1 Implementation Based on Adjacency Matrix

Given an undirected graph with 𝑛 vertices, the various operations are implemented as shown in Figure
9-7.

• Adding or removing an edge: Directly modify the specified edge in the adjacency matrix, using
𝑂(1) time. Since it is an undirected graph, both directions of the edge need to be updated simul-
taneously.

• Adding a vertex: Add a row and a column at the end of the adjacency matrix and fill them all with
0s, using𝑂(𝑛) time.

• Removing a vertex: Delete a row and a column in the adjacency matrix. The worst case occurs
when removing the first row and column, requiring (𝑛−1)2 elements to be “moved up and to the
left”, thus using𝑂(𝑛2) time.

• Initialization: Pass in 𝑛 vertices, initialize a vertex list vertices of length 𝑛, using 𝑂(𝑛) time;
initialize an adjacency matrix adjMat of size 𝑛 × 𝑛, using𝑂(𝑛2) time.
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Figure 9-7 Initialization, adding and removing edges, adding and removing vertices in adjacency
matrix

The following is the implementation code for graphs represented using an adjacency matrix:

^/ ^^= File: graph_adjacency_matrix.cpp ^^=

^* Undirected graph class based on adjacency matrix ^/
class GraphAdjMat {

vector<int> vertices; ^/ Vertex list, where the element represents the "vertex value"
and the index represents the "vertex index"↪
vector<vector<int>> adjMat; ^/ Adjacency matrix, where the row and column indices correspond
to the "vertex index"↪

public:
^* Constructor ^/
GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {

^/ Add vertex
for (int val : vertices) {

addVertex(val);
}
^/ Add edge
^/ Note that the edges elements represent vertex indices, i.e., corresponding to the

vertices element indices↪
for (const vector<int> &edge : edges) {

addEdge(edge[0], edge[1]);
}

}

^* Get the number of vertices ^/
int size() const {

return vertices.size();
}

^* Add vertex ^/
void addVertex(int val) {

int n = size();
^/ Add the value of the new vertex to the vertex list
vertices.push_back(val);
^/ Add a row to the adjacency matrix
adjMat.emplace_back(vector<int>(n, 0));
^/ Add a column to the adjacency matrix
for (vector<int> &row : adjMat) {

row.push_back(0);
}



Chapter 9. Graph www.hello-algo.com 205

}

^* Remove vertex ^/
void removeVertex(int index) {

if (index >= size()) {
throw out_of_range("Vertex does not exist");

}
^/ Remove the vertex at index from the vertex list
vertices.erase(vertices.begin() + index);
^/ Remove the row at index from the adjacency matrix
adjMat.erase(adjMat.begin() + index);
^/ Remove the column at index from the adjacency matrix
for (vector<int> &row : adjMat) {

row.erase(row.begin() + index);
}

}

^* Add edge ^/
^/ Parameters i, j correspond to the vertices element indices
void addEdge(int i, int j) {

^/ Handle index out of bounds and equality
if (i < 0 ^| j < 0 ^| i >= size() ^| j >= size() ^| i ^= j) {

throw out_of_range("Vertex does not exist");
}
^/ In an undirected graph, the adjacency matrix is symmetric about the main diagonal,

i.e., (i, j) ^= (j, i)↪
adjMat[i][j] = 1;
adjMat[j][i] = 1;

}

^* Remove edge ^/
^/ Parameters i, j correspond to the vertices element indices
void removeEdge(int i, int j) {

^/ Handle index out of bounds and equality
if (i < 0 ^| j < 0 ^| i >= size() ^| j >= size() ^| i ^= j) {

throw out_of_range("Vertex does not exist");
}
adjMat[i][j] = 0;
adjMat[j][i] = 0;

}

^* Print adjacency matrix ^/
void print() {

cout << "Vertex list = ";
printVector(vertices);
cout << "Adjacency matrix =" << endl;
printVectorMatrix(adjMat);

}
};

9.2.2 Implementation Based on Adjacency List

Given an undirected graph with a total of 𝑛 vertices and𝑚 edges, the various operations can be imple-
mented as shown in Figure 9-8.

• Adding an edge: Add the edge at the end of the corresponding vertex’s linked list, using𝑂(1) time.
Since it is an undirected graph, edges in both directions need to be added simultaneously.
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• Removing an edge: Find and remove the specified edge in the corresponding vertex’s linked list,
using 𝑂(𝑚) time. In an undirected graph, edges in both directions need to be removed simulta-
neously.

• Adding a vertex: Add a linked list in the adjacency list and set the new vertex as the head node of
the list, using𝑂(1) time.

• Removing a vertex: Traverse the entire adjacency list and remove all edges containing the speci-
fied vertex, using𝑂(𝑛 + 𝑚) time.

• Initialization: Create 𝑛 vertices and 2𝑚 edges in the adjacency list, using𝑂(𝑛 + 𝑚) time.

Figure 9-8 Initialization, adding and removing edges, adding and removing vertices in adjacency list

The following is the adjacency list code implementation. Compared to Figure 9-8, the actual code has
the following differences.

• For convenience in adding and removing vertices, and to simplify the code, we use lists (dynamic
arrays) instead of linked lists.

• A hash table is used to store the adjacency list, where key is the vertex instance and value is the
list (linked list) of adjacent vertices for that vertex.
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Additionally, we use the Vertex class to represent vertices in the adjacency list. The reason for this is:
if we used list indices to distinguish different vertices as with adjacency matrices, then to delete the
vertex at index 𝑖, we would need to traverse the entire adjacency list and decrement all indices greater
than 𝑖 by 1, which is very inefficient. However, if each vertex is a unique Vertex instance, deleting a
vertex does not require modifying other vertices.

^/ ^^= File: graph_adjacency_list.cpp ^^=

^* Undirected graph class based on adjacency list ^/
class GraphAdjList {

public:
^/ Adjacency list, key: vertex, value: all adjacent vertices of that vertex
unordered_map<Vertex *, vector<Vertex ^>> adjList;

^* Remove specified node from vector ^/
void remove(vector<Vertex ^> &vec, Vertex *vet) {

for (int i = 0; i < vec.size(); i^+) {
if (vec[i] ^= vet) {

vec.erase(vec.begin() + i);
break;

}
}

}

^* Constructor ^/
GraphAdjList(const vector<vector<Vertex ^>> &edges) {

^/ Add all vertices and edges
for (const vector<Vertex ^> &edge : edges) {

addVertex(edge[0]);
addVertex(edge[1]);
addEdge(edge[0], edge[1]);

}
}

^* Get the number of vertices ^/
int size() {

return adjList.size();
}

^* Add edge ^/
void addEdge(Vertex *vet1, Vertex *vet2) {

if (!adjList.count(vet1) ^| !adjList.count(vet2) ^| vet1 ^= vet2)
throw invalid_argument("Vertex does not exist");

^/ Add edge vet1 - vet2
adjList[vet1].push_back(vet2);
adjList[vet2].push_back(vet1);

}

^* Remove edge ^/
void removeEdge(Vertex *vet1, Vertex *vet2) {

if (!adjList.count(vet1) ^| !adjList.count(vet2) ^| vet1 ^= vet2)
throw invalid_argument("Vertex does not exist");

^/ Remove edge vet1 - vet2
remove(adjList[vet1], vet2);
remove(adjList[vet2], vet1);

}

^* Add vertex ^/
void addVertex(Vertex *vet) {
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if (adjList.count(vet))
return;

^/ Add a new linked list in the adjacency list
adjList[vet] = vector<Vertex ^>();

}

^* Remove vertex ^/
void removeVertex(Vertex *vet) {

if (!adjList.count(vet))
throw invalid_argument("Vertex does not exist");

^/ Remove the linked list corresponding to vertex vet in the adjacency list
adjList.erase(vet);
^/ Traverse the linked lists of other vertices and remove all edges containing vet
for (auto &adj : adjList) {

remove(adj.second, vet);
}

}

^* Print adjacency list ^/
void print() {

cout << "Adjacency list =" << endl;
for (auto &adj : adjList) {

const auto &key = adj.first;
const auto &vec = adj.second;
cout << key->val << ": ";
printVector(vetsToVals(vec));

}
}

};

9.2.3 Efficiency Comparison

Assuming the graph has 𝑛 vertices and 𝑚 edges, Table 9-2 compares the time efficiency and space
efficiency of adjacency matrices and adjacency lists. Note that the adjacency list (linked list) corre-
sponds to the implementation in this text, while the adjacency list (hash table) refers specifically to the
implementation where all linked lists are replaced with hash tables.

Table 9-2 Comparison of adjacency matrix and adjacency list

Adjacency matrix Adjacency list (linked list) Adjacency list (hash table)

Determine adjacency 𝑂(1) 𝑂(𝑛) 𝑂(1)
Add an edge 𝑂(1) 𝑂(1) 𝑂(1)
Remove an edge 𝑂(1) 𝑂(𝑛) 𝑂(1)
Add a vertex 𝑂(𝑛) 𝑂(1) 𝑂(1)
Remove a vertex 𝑂(𝑛2) 𝑂(𝑛 + 𝑚) 𝑂(𝑛)
Memory space usage 𝑂(𝑛2) 𝑂(𝑛 + 𝑚) 𝑂(𝑛 + 𝑚)

Observing Table 9-2, it appears that the adjacency list (hash table) has the best time efficiency and
space efficiency. However, in practice, operating on edges in the adjacency matrix is more efficient,
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requiring only a single array access or assignment operation. Overall, adjacency matrices embody the
principle of “trading space for time”, while adjacency lists embody “trading time for space”.

9.3 Graph Traversal

Trees represent “one-to-many” relationships, while graphs have a higher degree of freedom and can
represent any “many-to-many” relationships. Therefore, we can view trees as a special case of graphs.
Clearly, tree traversal operations are also a special case of graph traversal operations.

Both graphs and trees require the application of search algorithms to implement traversal operations.
Graph traversal methods can also be divided into two types: breadth-first traversal and depth-first
traversal.

9.3.1 Breadth-First Search

Breadth-first search is a near-to-far traversal method that, starting from a certain node, always pri-
oritizes visiting the nearest vertices and expands outward layer by layer. As shown in Figure 9-9,
starting from the top-left vertex, first traverse all adjacent vertices of that vertex, then traverse all
adjacent vertices of the next vertex, and so on, until all vertices have been visited.

Figure 9-9 Breadth-first search of a graph

1. Algorithm Implementation

BFS is typically implemented with the help of a queue, as shown in the code below. The queue has a
“first in, first out” property, which aligns with the BFS idea of “near to far”.

1. Add the starting vertex startVet to the queue and begin the loop.
2. In each iteration of the loop, pop the vertex at the front of the queue and record it as visited, then
add all adjacent vertices of that vertex to the back of the queue.

3. Repeat step 2. until all vertices have been visited.
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To prevent revisiting vertices, we use a hash set visited to record which nodes have been visited.

Tip
A hash set can be viewed as a hash table that stores only key without storing value. It can
perform addition, deletion, lookup, and modification operations on key in𝑂(1) time complexity.
Based on the uniqueness of key, hash sets are typically used for data deduplication and similar
scenarios.

^/ ^^= File: graph_bfs.cpp ^^=

^* Breadth-first traversal ^/
^/ Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a

specified vertex↪
vector<Vertex ^> graphBFS(GraphAdjList &graph, Vertex *startVet) {

^/ Vertex traversal sequence
vector<Vertex ^> res;
^/ Hash set for recording vertices that have been visited
unordered_set<Vertex ^> visited = {startVet};
^/ Queue used to implement BFS
queue<Vertex ^> que;
que.push(startVet);
^/ Starting from vertex vet, loop until all vertices are visited
while (!que.empty()) {

Vertex *vet = que.front();
que.pop(); ^/ Dequeue the front vertex
res.push_back(vet); ^/ Record visited vertex
^/ Traverse all adjacent vertices of this vertex
for (auto adjVet : graph.adjList[vet]) {

if (visited.count(adjVet))
continue; ^/ Skip vertices that have been visited

que.push(adjVet); ^/ Only enqueue unvisited vertices
visited.emplace(adjVet); ^/ Mark this vertex as visited

}
}
^/ Return vertex traversal sequence
return res;

}

The code is relatively abstract; it is recommended to refer to Figure 9-10 to deepen understanding.
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Figure 9-10 Steps of breadth-first search of a graph

Is the breadth-first traversal sequence unique?
Not unique. Breadth-first search only requires traversing in a “near to far” order, and the traver-
sal order of vertices at the same distance can be arbitrarily shuffled. Taking Figure 9-10 as an
example, the visit order of vertices 1 and 3 can be swapped, as can the visit order of vertices 2,
4, and 6.

2. Complexity Analysis

Time complexity: All vertices will be enqueued and dequeued once, using𝑂(|𝑉 |) time; in the process
of traversing adjacent vertices, since it is an undirected graph, all edges will be visited 2 times, using
𝑂(2|𝐸|) time; overall using𝑂(|𝑉 | + |𝐸|) time.
Space complexity: The list res, hash set visited, and queue que can contain at most |𝑉 | vertices, using
𝑂(|𝑉 |) space.

9.3.2 Depth-First Search

Depth-first search is a traversal method that prioritizes going as far as possible, then backtracks
when no path remains. As shown in Figure 9-11, starting from the top-left vertex, visit an adjacent
vertex of the current vertex, continuing until reaching a dead end, then return and continue going as
far as possible before returning again, and so on, until all vertices have been traversed.

Figure 9-11 Depth-first search of a graph

1. Algorithm Implementation

This “go as far as possible then return” algorithm paradigm is typically implemented using recursion.
Similar to breadth-first search, in depth-first search we also need a hash set visited to record visited
vertices and avoid revisiting.
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^/ ^^= File: graph_dfs.cpp ^^=

^* Depth-first traversal helper function ^/
void dfs(GraphAdjList &graph, unordered_set<Vertex ^> &visited, vector<Vertex ^> &res, Vertex

*vet) {↪
res.push_back(vet); ^/ Record visited vertex
visited.emplace(vet); ^/ Mark this vertex as visited
^/ Traverse all adjacent vertices of this vertex
for (Vertex *adjVet : graph.adjList[vet]) {

if (visited.count(adjVet))
continue; ^/ Skip vertices that have been visited

^/ Recursively visit adjacent vertices
dfs(graph, visited, res, adjVet);

}
}

^* Depth-first traversal ^/
^/ Use adjacency list to represent the graph, in order to obtain all adjacent vertices of a

specified vertex↪
vector<Vertex ^> graphDFS(GraphAdjList &graph, Vertex *startVet) {

^/ Vertex traversal sequence
vector<Vertex ^> res;
^/ Hash set for recording vertices that have been visited
unordered_set<Vertex ^> visited;
dfs(graph, visited, res, startVet);
return res;

}

The algorithm flow of depth-first search is shown in Figure 9-12.

• Straight dashed lines represent downward recursion, indicating that a new recursive method
has been initiated to visit a new vertex.

• Curved dashed lines represent upward backtracking, indicating that this recursive method has
returned to the position where it was initiated.

To deepen understanding, it is recommended to combine Figure 9-12with the code tomentally simulate
(or draw out) the entire DFS process, including when each recursive method is initiated and when it
returns.
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Figure 9-12 Steps of depth-first search of a graph

Is the depth-first traversal sequence unique?
Similar to breadth-first search, the order of depth-first traversal sequences is also not unique.
Given a certain vertex, exploring in any direction first is valid, meaning the order of adjacent
vertices can be arbitrarily shuffled, all being depth-first search.
Taking tree traversal as an example, “root → left → right”, “left → root → right”, and “left →
right → root” correspond to pre-order, in-order, and post-order traversals, respectively. They
represent three different traversal priorities, yet all three belong to depth-first search.

2. Complexity Analysis

Time complexity: All vertices will be visited 1 time, using𝑂(|𝑉 |) time; all edges will be visited 2 times,
using𝑂(2|𝐸|) time; overall using𝑂(|𝑉 | + |𝐸|) time.
Space complexity: The list res and hash set visited can contain atmost |𝑉 | vertices, and themaximum
recursion depth is |𝑉 |, therefore using𝑂(|𝑉 |) space.

9.4 Summary

1. Key Review

• Graphs consist of vertices and edges and can be represented as a set of vertices and a set of edges.
• Compared to linear relationships (linked lists) and divide-and-conquer relationships (trees), net-
work relationships (graphs) have a higher degree of freedom and are therefore more complex.

• Directed graphs have edges with directionality, connected graphs have all vertices reachable from
any vertex, and weighted graphs have edges that each contain a weight variable.

• Adjacency matrices use matrices to represent graphs, where each row (column) represents a ver-
tex, and matrix elements represent edges, using 1 or 0 to indicate whether two vertices have an
edge or not. Adjacency matrices are highly efficient for addition, deletion, lookup, and modifica-
tion operations, but consume significant space.

• Adjacency lists usemultiple linked lists to represent graphs, where the 𝑖-th linked list corresponds
to vertex 𝑖 and stores all adjacent vertices of that vertex. Adjacency lists are more space-efficient
than adjacency matrices, but have lower time efficiency because they require traversing linked
lists to find edges.

• When linked lists in adjacency lists become too long, they can be converted to red-black trees or
hash tables, thereby improving lookup efficiency.

• From an algorithmic perspective, adjacency matrices embody “trading space for time”, while ad-
jacency lists embody “trading time for space”.

• Graphs can be used to model various real-world systems, such as social networks and subway
lines.

• Trees are a special case of graphs, and tree traversal is a special case of graph traversal.
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• Breadth-first search of graphs is a near-to-far, layer-by-layer expansion search method, typically
implemented using a queue.

• Depth-first search of graphs is a search method that prioritizes going as far as possible and back-
tracks when no path remains, commonly implemented using recursion.

2. Q & A

Q: Is a path defined as a sequence of vertices or a sequence of edges?

The definitions in different language versions of Wikipedia are inconsistent: the English version states
“a path is a sequence of edges”, while the Chinese version states “a path is a sequence of vertices”. The
following is the original English text: In graph theory, a path in a graph is a finite or infinite sequence
of edges which joins a sequence of vertices.

In this text, a path is viewed as a sequence of edges, not a sequence of vertices. This is because there
may be multiple edges connecting two vertices, in which case each edge corresponds to a path.

Q: In a disconnected graph, will there be unreachable vertices?

In a disconnected graph, starting from a certain vertex, at least one vertex cannot be reached. Travers-
ing a disconnected graph requires settingmultiple starting points to traverse all connected components
of the graph.

Q: In an adjacency list, is there a requirement for the order of “all vertices connected to that vertex”?

It can be in any order. However, in practical applications, it may be necessary to sort according to
specified rules, such as the order in which vertices were added, or the order of vertex values, which
helps quickly find vertices “with certain extreme values”.
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Chapter 10. Searching

Abstract
Searching is an adventure into the unknown, where we may need to traverse every corner of the
mysterious space, or we may be able to quickly lock onto the target.
In this journey of discovery, each exploration may yield an unexpected answer.



Chapter 10. Searching www.hello-algo.com 218

10.1 Binary Search

Binary search is an efficient searching algorithmbased on the divide-and-conquer strategy. It leverages
the orderliness of data to reduce the search range by half in each round until the target element is found
or the search interval becomes empty.

Question
Given an array nums of length 𝑛 with elements arranged in ascending order and no duplicates,
search for and return the index of element target in the array. If the array does not contain the
element, return−1. An example is shown in Figure 10-1.

Figure 10-1 Binary search example data

As shown in Figure 10-2, we first initialize pointers 𝑖 = 0 and 𝑗 = 𝑛 − 1, pointing to the first and
last elements of the array respectively, representing the search interval [0, 𝑛 − 1]. Note that square
brackets denote a closed interval, which includes the boundary values themselves.

Next, perform the following two steps in a loop:

1. Calculate the midpoint index𝑚 = ⌊(𝑖 + 𝑗)/2⌋, where ⌊ ⌋ denotes the floor operation.
2. Compare nums[m] and target, which results in three cases:

1. When nums[m] < target, it indicates that target is in the interval [𝑚 + 1, 𝑗], so execute
𝑖 = 𝑚 + 1.

2. When nums[m] > target, it indicates that target is in the interval [𝑖,𝑚 − 1], so execute
𝑗 = 𝑚 − 1.

3. When nums[m] = target, it indicates that target has been found, so return index𝑚.
If the array does not contain the target element, the search interval will eventually shrink to empty. In
this case, return−1.
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Figure 10-2 Binary search process

It’s worth noting that since both 𝑖 and 𝑗 are of int type, 𝑖 + 𝑗 may exceed the range of the int type.
To avoid large number overflow, we typically use the formula 𝑚 = ⌊𝑖 + (𝑗 − 𝑖)/2⌋ to calculate the
midpoint.

The code is shown below:

^/ ^^= File: binary_search.cpp ^^=
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^* Binary search (closed interval on both sides) ^/
int binarySearch(vector<int> &nums, int target) {

^/ Initialize closed interval [0, n-1], i.e., i, j point to the first and last elements of
the array↪

int i = 0, j = nums.size() - 1;
^/ Loop, exit when the search interval is empty (empty when i > j)
while (i <= j) {

int m = i + (j - i) / 2; ^/ Calculate the midpoint index m
if (nums[m] < target) ^/ This means target is in the interval [m+1, j]

i = m + 1;
else if (nums[m] > target) ^/ This means target is in the interval [i, m-1]

j = m - 1;
else ^/ Found the target element, return its index

return m;
}
^/ Target element not found, return -1
return -1;

}

Time complexity is 𝑂(log𝑛): In the binary loop, the interval is reduced by half each round, so the
number of loops is log2 𝑛.
Space complexity is𝑂(1): Pointers 𝑖 and 𝑗 use constant-size space.

10.1.1 Interval Representation Methods

In addition to the closed interval mentioned above, another common interval representation is the
“left-closed right-open” interval, defined as [0, 𝑛), meaning the left boundary includes itself while the
right boundary does not. Under this representation, the interval [𝑖, 𝑗) is empty when 𝑖 = 𝑗.
We can implement a binary search algorithm with the same functionality based on this representa-
tion:

^/ ^^= File: binary_search.cpp ^^=

^* Binary search (left-closed right-open interval) ^/
int binarySearchLCRO(vector<int> &nums, int target) {

^/ Initialize left-closed right-open interval [0, n), i.e., i, j point to the first element
and last element+1↪

int i = 0, j = nums.size();
^/ Loop, exit when the search interval is empty (empty when i = j)
while (i < j) {

int m = i + (j - i) / 2; ^/ Calculate the midpoint index m
if (nums[m] < target) ^/ This means target is in the interval [m+1, j)

i = m + 1;
else if (nums[m] > target) ^/ This means target is in the interval [i, m)

j = m;
else ^/ Found the target element, return its index

return m;
}
^/ Target element not found, return -1
return -1;

}
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As shown in Figure 10-3, under the two interval representations, the initialization, loop condition, and
interval narrowing operations of the binary search algorithm are all different.

Since both the left and right boundaries in the “closed interval” representation are defined as closed,
the operations to narrow the interval through pointers 𝑖 and 𝑗 are also symmetric. This makes it less
error-prone, so the “closed interval” approach is generally recommended.

Figure 10-3 Two interval definitions

10.1.2 Advantages and Limitations

Binary search performs well in both time and space aspects.

• Binary search has high time efficiency. With large data volumes, the logarithmic time complexity
has significant advantages. For example, when the data size 𝑛 = 220, linear search requires
220 = 1048576 loop rounds, while binary search only needs log2 220 = 20 rounds.

• Binary search requires no extra space. Compared to searching algorithms that require additional
space (such as hash-based search), binary search is more space-efficient.

However, binary search is not suitable for all situations, mainly for the following reasons:

• Binary search is only applicable to sorted data. If the input data is unsorted, sorting specifically to
use binary search would be counterproductive, as sorting algorithms typically have a time com-
plexity of 𝑂(𝑛 log𝑛), which is higher than both linear search and binary search. For scenarios
with frequent element insertions, maintaining array orderliness requires inserting elements at
specific positions with a time complexity of𝑂(𝑛), which is also very expensive.

• Binary search is only applicable to arrays. Binary search requires jump-style (non-contiguous)
element access, and jump-style access has low efficiency in linked lists, making it unsuitable for
linked lists or data structures based on linked list implementations.

• For small data volumes, linear search performs better. In linear search, each round requires only
1 comparison operation; while in binary search, it requires 1 addition, 1 division, 1-3 comparison
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operations, and 1 addition (subtraction), totaling 4-6 unit operations. Therefore, when the data
volume 𝑛 is small, linear search is actually faster than binary search.

10.2 Binary Search Insertion Point

Binary search cannot only be used to search for target elements but also to solvemany variant problems,
such as searching for the insertion position of a target element.

10.2.1 Case Without Duplicate Elements

Question
Given a sorted array nums of length 𝑛 and an element target, where the array contains no dupli-
cate elements. Insert target into the array nums while maintaining its sorted order. If the array
already contains the element target, insert it to its left. Return the index of target in the array
after insertion. An example is shown in Figure 10-4.

Figure 10-4 Binary search insertion point example data

If we want to reuse the binary search code from the previous section, we need to answer the following
two questions.

Question 1: When the array contains target, is the insertion point index the same as that element’s
index?

The problem requires inserting target to the left of equal elements, which means the newly inserted
target replaces the position of the original target. In other words, when the array contains target,
the insertion point index is the index of that target.

Question 2: When the array does not contain target, what is the insertion point index?

Further consider the binary search process: When nums[m] < target, 𝑖 moves, which means pointer
𝑖 is approaching elements greater than or equal to target. Similarly, pointer 𝑗 is always approaching
elements less than or equal to target.
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Therefore, when the binary search ends, wemust have: 𝑖 points to the first element greater than target,
and 𝑗 points to the first element less than target. It’s easy to see that when the array does not contain
target, the insertion index is 𝑖. The code is shown below:
^/ ^^= File: binary_search_insertion.cpp ^^=

^* Binary search for insertion point (no duplicate elements) ^/
int binarySearchInsertionSimple(vector<int> &nums, int target) {

int i = 0, j = nums.size() - 1; ^/ Initialize closed interval [0, n-1]
while (i <= j) {

int m = i + (j - i) / 2; ^/ Calculate the midpoint index m
if (nums[m] < target) {

i = m + 1; ^/ target is in the interval [m+1, j]
} else if (nums[m] > target) {

j = m - 1; ^/ target is in the interval [i, m-1]
} else {

return m; ^/ Found target, return insertion point m
}

}
^/ Target not found, return insertion point i
return i;

}

10.2.2 Case with Duplicate Elements

Question
Based on the previous problem, assume the array may contain duplicate elements, with every-
thing else remaining the same.

Suppose there are multiple target elements in the array. Ordinary binary search can only return the
index of one target, and cannot determine how many target elements are to the left and right of
that element.

The problem requires inserting the target element at the leftmost position, sowe need to find the index
of the leftmost target in the array. Initially, consider implementing this through the steps shown in
Figure 10-5:

1. Perform binary search to obtain the index of any target, denoted as 𝑘.
2. Starting from index 𝑘, perform linear traversal to the left, and return when the leftmost target is
found.
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Figure 10-5 Linear search for insertion point of duplicate elements

Although this method works, it includes linear search, resulting in a time complexity of 𝑂(𝑛). When
the array contains many duplicate target elements, this method is very inefficient.

Now consider extending the binary search code. As shown in Figure 10-6, the overall process remains
unchanged: calculate the midpoint index𝑚 in each round, then compare targetwith nums[m], divided
into the following cases:

• When nums[m] < target or nums[m] > target, it means target has not been found yet, so
use the ordinary binary search interval narrowing operation to make pointers 𝑖 and 𝑗 approach
target.

• When nums[m] ^= target, it means elements less than target are in the interval [𝑖, 𝑚 − 1], so
use 𝑗 = 𝑚 − 1 to narrow the interval, thereby making pointer 𝑗 approach elements less than
target.

After the loop completes, 𝑖 points to the leftmost target, and 𝑗 points to the first element less than
target, so index 𝑖 is the insertion point.
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Figure 10-6 Steps for binary search insertion point of duplicate elements

Observe the following code: the operations for branches nums[m] > target and nums[m] ^= target
are the same, so the two can be merged.

Even so, we can still keep the conditional branches expanded, as the logic is clearer and more read-
able.

^/ ^^= File: binary_search_insertion.cpp ^^=

^* Binary search for insertion point (with duplicate elements) ^/
int binarySearchInsertion(vector<int> &nums, int target) {

int i = 0, j = nums.size() - 1; ^/ Initialize closed interval [0, n-1]
while (i <= j) {

int m = i + (j - i) / 2; ^/ Calculate the midpoint index m
if (nums[m] < target) {

i = m + 1; ^/ target is in the interval [m+1, j]
} else if (nums[m] > target) {

j = m - 1; ^/ target is in the interval [i, m-1]
} else {

j = m - 1; ^/ The first element less than target is in the interval [i, m-1]
}

}
^/ Return insertion point i
return i;

}

Tip
The code in this section all uses the “closed interval” approach. Interested readers can implement
the “left-closed right-open” approach themselves.

Overall, binary search is simply about setting search targets for pointers 𝑖 and 𝑗 separately. The tar-
get could be a specific element (such as target) or a range of elements (such as elements less than
target).

Through continuous binary iterations, both pointers 𝑖 and 𝑗 gradually approach their preset targets.
Ultimately, they either successfully find the answer or stop after crossing the boundaries.
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10.3 Binary Search Edge Cases

10.3.1 Finding the Left Boundary

Question
Given a sorted array nums of length 𝑛 that may contain duplicate elements, return the index of
the leftmost element target in the array. If the array does not contain the element, return−1.

Recall the method for finding the insertion point with binary search. After the search completes, 𝑖
points to the leftmost target, so finding the insertion point is essentially finding the index of the
leftmost target.

Consider implementing the left boundary search using the insertion point finding function. Note that
the array may not contain target, which could result in the following two cases:

• The insertion point index 𝑖 is out of bounds.
• The element nums[i] is not equal to target.

When either of these situations occurs, simply return−1. The code is shown below:
^/ ^^= File: binary_search_edge.cpp ^^=

^* Binary search for the leftmost target ^/
int binarySearchLeftEdge(vector<int> &nums, int target) {

^/ Equivalent to finding the insertion point of target
int i = binarySearchInsertion(nums, target);
^/ Target not found, return -1
if (i ^= nums.size() ^| nums[i] ^= target) {

return -1;
}
^/ Found target, return index i
return i;

}

10.3.2 Finding the Right Boundary

So how do we find the rightmost target? The most direct approach is to modify the code and replace
the pointer shrinking operation in the nums[m] ^= target case. The code is omitted here; interested
readers can implement it themselves.

Below we introduce two more clever methods.

1. Reusing Left Boundary Search

In fact, we can use the function for finding the leftmost element to find the rightmost element. The
specific method is: Convert finding the rightmost target into finding the leftmost target + 1.

As shown in Figure 10-7, after the search completes, pointer 𝑖 points to the leftmost target + 1 (if it
exists), while 𝑗 points to the rightmost target, so we can simply return 𝑗.



Chapter 10. Searching www.hello-algo.com 227

Figure 10-7 Converting right boundary search to left boundary search

Note that the returned insertion point is 𝑖, so we need to subtract 1 from it to obtain 𝑗:

^/ ^^= File: binary_search_edge.cpp ^^=

^* Binary search for the rightmost target ^/
int binarySearchRightEdge(vector<int> &nums, int target) {

^/ Convert to finding the leftmost target + 1
int i = binarySearchInsertion(nums, target + 1);
^/ j points to the rightmost target, i points to the first element greater than target
int j = i - 1;
^/ Target not found, return -1
if (j ^= -1 ^| nums[j] ^= target) {

return -1;
}
^/ Found target, return index j
return j;

}

2. Converting to Element Search

We know that when the array does not contain target, 𝑖 and 𝑗will eventually point to the first elements
greater than and less than target, respectively.

Therefore, as shown in Figure 10-8, we can construct an element that does not exist in the array to find
the left and right boundaries.

• Finding the leftmost target: Can be converted to finding target - 0.5 and returning pointer 𝑖.
• Finding the rightmost target: Can be converted to finding target + 0.5 and returning pointer

𝑗.
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Figure 10-8 Converting boundary search to element search

The code is omitted here, but the following two points are worth noting:

• Since the given array does not contain decimals, we don’t need to worry about how to handle
equal cases.

• Because thismethod introduces decimals, the variable target in the function needs to be changed
to a floating-point type (Python does not require this change).

10.4 Hash Optimization Strategy

In algorithm problems, we often reduce the time complexity of algorithms by replacing linear search
with hash-based search. Let’s use an algorithm problem to deepen our understanding.

Question
Given an integer array nums and a target element target, search for two elements in the array
whose “sum” equals target, and return their array indices. Any solution will do.

10.4.1 Linear Search: Trading Time for Space

Consider directly traversing all possible combinations. As shown in Figure 10-9, we open a two-layer
loop and judge in each round whether the sum of two integers equals target. If so, return their in-
dices.
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Figure 10-9 Linear search solution for two sum

The code is shown below:

^/ ^^= File: two_sum.cpp ^^=

^* Method 1: Brute force enumeration ^/
vector<int> twoSumBruteForce(vector<int> &nums, int target) {

int size = nums.size();
^/ Two nested loops, time complexity is O(n^2)
for (int i = 0; i < size - 1; i^+) {

for (int j = i + 1; j < size; j^+) {
if (nums[i] + nums[j] ^= target)

return {i, j};
}

}
return {};

}

This method has a time complexity of 𝑂(𝑛2) and a space complexity of 𝑂(1), which is very time-
consuming with large data volumes.

10.4.2 Hash-Based Search: Trading Space for Time

Consider using a hash table where key-value pairs are array elements and element indices respectively.
Loop through the array, performing the steps shown in Figure 10-10 in each round:

1. Check if the number target - nums[i] is in the hash table. If so, directly return the indices of
these two elements.

2. Add the key-value pair nums[i] and index i to the hash table.
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Figure 10-10 Hash table solution for two sum

The implementation code is shown below, requiring only a single loop:

^/ ^^= File: two_sum.cpp ^^=

^* Method 2: Auxiliary hash table ^/
vector<int> twoSumHashTable(vector<int> &nums, int target) {

int size = nums.size();
^/ Auxiliary hash table, space complexity is O(n)
unordered_map<int, int> dic;
^/ Single loop, time complexity is O(n)
for (int i = 0; i < size; i^+) {

if (dic.find(target - nums[i]) ^= dic.end()) {
return {dic[target - nums[i]], i};

}
dic.emplace(nums[i], i);

}
return {};

}

This method reduces the time complexity from 𝑂(𝑛2) to 𝑂(𝑛) through hash-based search, greatly
improving runtime efficiency.

Since an additional hash table needs to be maintained, the space complexity is 𝑂(𝑛). Nevertheless,
this method achieves a more balanced overall time-space efficiency, making it the optimal solution
for this problem.
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10.5 Searching Algorithms Revisited

Searching algorithms are used to search for one or a group of elements that meet specific conditions
in data structures (such as arrays, linked lists, trees, or graphs).

Searching algorithms can be divided into the following two categories based on their implementation
approach:

• Locating target elements by traversing the data structure, such as traversing arrays, linked lists,
trees, and graphs.

• Achieving efficient element search by utilizing data organization structure or prior information
contained in the data, such as binary search, hash-based search, and binary search tree search.

It’s not hard to see that these topics have all been covered in previous chapters, so searching algorithms
are not unfamiliar to us. In this section, we will approach from a more systematic perspective and re-
examine searching algorithms.

10.5.1 Brute-Force Search

Brute-force search locates target elements by traversing each element of the data structure.

• “Linear search” is applicable to linear data structures such as arrays and linked lists. It starts from
one end of the data structure and accesses elements one by one until the target element is found
or the other end is reached without finding the target element.

• “Breadth-first search” and “depth-first search” are two traversal strategies for graphs and trees.
Breadth-first search starts from the initial node and searches layer by layer, visiting nodes from
near to far. Depth-first search starts from the initial node, follows a path to the end, then back-
tracks and tries other paths until the entire data structure is traversed.

The advantage of brute-force search is that it is simple and has good generality, requiring no data
preprocessing or additional data structures.

However, the time complexity of such algorithms is 𝑂(𝑛), where 𝑛 is the number of elements, so
performance is poor when dealing with large amounts of data.

10.5.2 Adaptive Search

Adaptive search utilizes the unique properties of data (such as orderliness) to optimize the search pro-
cess, thereby locating target elements more efficiently.

• “Binary search” uses the orderliness of data to achieve efficient searching, applicable only to ar-
rays.

• “Hash-based search” uses hash tables to establish key-value pair mappings between search data
and target data, thereby achieving query operations.

• “Tree search” in specific tree structures (such as binary search trees), quickly eliminates nodes
based on comparing node values to locate target elements.
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The advantage of such algorithms is high efficiency, with time complexity reaching 𝑂(log𝑛) or even
𝑂(1).
However, using these algorithms often requires data preprocessing. For example, binary search re-
quires pre-sorting the array, while hash-based search and tree search both require additional data
structures, and maintaining these data structures also requires extra time and space overhead.

Tip
Adaptive search algorithms are often called lookup algorithms, mainly used to quickly retrieve
target elements in specific data structures.

10.5.3 Search Method Selection

Given a dataset of size 𝑛, we can use linear search, binary search, tree search, hash-based search, and
other methods to search for the target element. The working principles of each method are shown in
Figure 10-11.

Figure 10-11 Multiple search strategies

The operational efficiency and characteristics of the above methods are as follows:

Table 10-1 Comparison of search algorithm efficiency

Linear
search Binary search Tree search Hash-based search

Search element 𝑂(𝑛) 𝑂(log𝑛) 𝑂(log𝑛) 𝑂(1)
Insert element 𝑂(1) 𝑂(𝑛) 𝑂(log𝑛) 𝑂(1)
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Linear
search Binary search Tree search Hash-based search

Delete element 𝑂(𝑛) 𝑂(𝑛) 𝑂(log𝑛) 𝑂(1)
Extra space 𝑂(1) 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
Data
preprocessing

/ Sorting𝑂(𝑛 log𝑛) Tree building𝑂(𝑛 log𝑛) Hash table building𝑂(𝑛)

Data ordered Unordered Ordered Ordered Unordered

The choice of search algorithm also depends on data volume, search performance requirements, data
query and update frequency, etc.

Linear search

• Good generality, requiring no data preprocessing operations. If we only need to query the data
once, the data preprocessing time for the other threemethods would be longer than linear search.

• Suitable for small data volumes, where time complexity has less impact on efficiency.
• Suitable for scenarios with high data update frequency, as this method does not require any ad-
ditional data maintenance.

Binary search

• Suitable for large data volumes with stable efficiency performance, worst-case time complexity
of𝑂(log𝑛).

• Data volume cannot be too large, as storing arrays requires contiguous memory space.
• Not suitable for scenarios with frequent data insertion and deletion, as maintaining a sorted array
has high overhead.

Hash-based search

• Suitable for scenarios with high query performance requirements, with an average time complex-
ity of𝑂(1).

• Not suitable for scenarios requiring ordered data or range searches, as hash tables cannot main-
tain data orderliness.

• High dependence on hash functions and hash collision handling strategies, with significant risk
of performance degradation.

• Not suitable for excessively large data volumes, as hash tables require extra space to minimize
collisions and thus provide good query performance.

Tree search

• Suitable for massive data, as tree nodes are stored dispersedly in memory.
• Suitable for scenarios requiring maintained ordered data or range searches.
• During continuous node insertion and deletion, binary search trees may become skewed, degrad-
ing time complexity to𝑂(𝑛).

• If using AVL trees or red-black trees, all operations can run stably at 𝑂(log𝑛) efficiency, but
operations to maintain tree balance add extra overhead.



Chapter 10. Searching www.hello-algo.com 234

10.6 Summary

1. Key Review

• Binary search relies on data orderliness and progressively reduces the search interval by half
through loops. It requires input data to be sorted and is only applicable to arrays or data struc-
tures based on array implementations.

• Brute-force search locates data by traversing the data structure. Linear search is applicable to
arrays and linked lists, while breadth-first search and depth-first search are applicable to graphs
and trees. Such algorithms have good generality and require no data preprocessing, but have a
relatively high time complexity of𝑂(𝑛).

• Hash-based search, tree search, and binary search are efficient search methods that can quickly
locate target elements in specific data structures. Such algorithms are highly efficient with time
complexity reaching𝑂(log𝑛) or even𝑂(1), but typically require additional data structures.

• In practice, we need to analyze factors such as data scale, search performance requirements, and
data query and update frequency to choose the appropriate search method.

• Linear search is suitable for small-scale or frequently updated data; binary search is suitable for
large-scale, sorted data; hash-based search is suitable for data with high query efficiency require-
ments and no need for range queries; tree search is suitable for large-scale dynamic data that
needs to maintain order and support range queries.

• Replacing linear search with hash-based search is a commonly used strategy to optimize runtime,
reducing time complexity from𝑂(𝑛) to𝑂(1).
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Chapter 11. Sorting

Abstract
Sorting is like a magic key that transforms chaos into order, enabling us to understand and pro-
cess data more efficiently.
Whether it’s simple ascending order or complex categorized arrangements, sorting demon-
strates the harmonious beauty of data.
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11.1 Sorting Algorithm

Sorting algorithm (sorting algorithm) is used to arrange a group of data in a specific order. Sorting
algorithms have extensive applications because ordered data can usually be searched, analyzed, and
processed more efficiently.

As shown in Figure 11-1, data types in sorting algorithms can be integers, floating-point numbers, char-
acters, or strings, etc. The sorting criterion can be set according to requirements, such as numerical
size, character ASCII code order, or custom rules.

Figure 11-1 Data type and criterion examples

11.1.1 Evaluation Dimensions

Execution efficiency: We expect the time complexity of sorting algorithms to be as low as possible,
with a smaller total number of operations (reducing the constant factor in time complexity). For large
data volumes, execution efficiency is particularly important.

In-place property: As the name implies, in-place sorting achieves sorting by operating directly on the
original array without requiring additional auxiliary arrays, thus saving memory. Typically, in-place
sorting involves fewer data movement operations and runs faster.

Stability: Stable sorting ensures that the relative order of equal elements in the array does not change
after sorting is completed.

Stable sorting is a necessary condition for multi-level sorting scenarios. Suppose we have a table stor-
ing student information, where column 1 and column 2 are name and age, respectively. In this case,
unstable sorting may cause the ordered nature of the input data to be lost:

# Input Data Is Sorted by Name
# (name, age)

('A', 19)
('B', 18)
('C', 21)
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('D', 19)
('E', 23)

# Assuming We Use an Unstable Sorting Algorithm to Sort the List by Age,
# In the Result, the Relative Positions of ('D', 19) and ('A', 19) Are Changed,
# And the Property That the Input Data Is Sorted by Name Is Lost

('B', 18)
('D', 19)
('A', 19)
('C', 21)
('E', 23)

Adaptability: Adaptive sorting can utilize the existing order information in the input data to reduce the
amount of computation, achieving better time efficiency. The best-case time complexity of adaptive
sorting algorithms is typically better than the average time complexity.

Comparison-based or not: Comparison-based sorting relies on comparison operators (<, =, >) to
determine the relative order of elements, thereby sorting the entire array, with a theoretical optimal
time complexity of 𝑂(𝑛 log𝑛). Non-comparison sorting does not use comparison operators and can
achieve a time complexity of𝑂(𝑛), but its versatility is relatively limited.

11.1.2 Ideal Sorting Algorithm

Fast execution, in-place, stable, adaptive, good versatility. Clearly, no sorting algorithm has been
discovered to date that combines all of these characteristics. Therefore, when selecting a sorting algo-
rithm, it is necessary to decide based on the specific characteristics of the data and the requirements
of the problem.

Next, we will learn about various sorting algorithms together and analyze the advantages and disadvan-
tages of each sorting algorithm based on the above evaluation dimensions.

11.2 Selection Sort

Selection sort (selection sort) works very simply: it opens a loop, and in each round, selects the smallest
element from the unsorted interval and places it at the end of the sorted interval.

Assume the array has length 𝑛. The algorithm flow of selection sort is shown in Figure 11-2.

1. Initially, all elements are unsorted, i.e., the unsorted (index) interval is [0, 𝑛 − 1].
2. Select the smallest element in the interval [0, 𝑛−1] and swap it with the element at index 0. After
completion, the first element of the array is sorted.

3. Select the smallest element in the interval [1, 𝑛−1] and swap it with the element at index 1. After
completion, the first 2 elements of the array are sorted.

4. And so on. After 𝑛−1 rounds of selection and swapping, the first 𝑛−1 elements of the array are
sorted.

5. The only remaining elementmust be the largest element, requiring no sorting, so the array sorting
is complete.
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Figure 11-2 Selection sort steps

In the code, we use 𝑘 to record the smallest element within the unsorted interval:

^/ ^^= File: selection_sort.cpp ^^=

^* Selection sort ^/
void selectionSort(vector<int> &nums) {

int n = nums.size();
^/ Outer loop: unsorted interval is [i, n-1]
for (int i = 0; i < n - 1; i^+) {

^/ Inner loop: find the smallest element within the unsorted interval
int k = i;
for (int j = i + 1; j < n; j^+) {

if (nums[j] < nums[k])
k = j; ^/ Record the index of the smallest element

}
^/ Swap the smallest element with the first element of the unsorted interval
swap(nums[i], nums[k]);

}
}

11.2.1 Algorithm Characteristics

• Time complexity of𝑂(𝑛2), non-adaptive sorting: The outer loop has 𝑛 − 1 rounds in total. The
length of the unsorted interval in the first round is 𝑛, and the length of the unsorted interval in
the last round is 2. That is, each round of the outer loop contains 𝑛, 𝑛 − 1, …, 3, 2 inner loop
iterations, summing to (𝑛−1)(𝑛+2)

2 .
• Space complexity of𝑂(1), in-place sorting: Pointers 𝑖 and 𝑗 use a constant amount of extra space.
• Non-stable sorting: As shown in Figure 11-3, element nums[i]may be swapped to the right of an
element equal to it, causing a change in their relative order.
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Figure 11-3 Selection sort non-stability example

11.3 Bubble Sort

Bubble sort (bubble sort) achieves sorting by continuously comparing and swapping adjacent elements.
This process is like bubbles rising from the bottom to the top, hence the name bubble sort.

As shown in Figure 11-4, the bubbling process can be simulated using element swap operations: starting
from the leftmost end of the array and traversing to the right, compare the size of adjacent elements,
and if “left element > right element”, swap them. After completing the traversal, the largest element
will be moved to the rightmost end of the array.
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Figure 11-4 Simulating bubble using element swap operation

11.3.1 Algorithm Flow

Assume the array has length 𝑛. The steps of bubble sort are shown in Figure 11-5.
1. First, perform “bubbling” on 𝑛 elements, swapping the largest element of the array to its correct
position.

2. Next, perform “bubbling” on the remaining 𝑛−1 elements, swapping the second largest element
to its correct position.

3. And so on. After 𝑛 − 1 rounds of “bubbling”, the largest 𝑛 − 1 elements have all been swapped to
their correct positions.

4. The only remaining element must be the smallest element, requiring no sorting, so the array sort-
ing is complete.
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Figure 11-5 Bubble sort flow

Example code is as follows:

^/ ^^= File: bubble_sort.cpp ^^=

^* Bubble sort ^/
void bubbleSort(vector<int> &nums) {

^/ Outer loop: unsorted range is [0, i]
for (int i = nums.size() - 1; i > 0; i--) {

^/ Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end
of that range↪

for (int j = 0; j < i; j^+) {
if (nums[j] > nums[j + 1]) {

^/ Swap nums[j] and nums[j + 1]
^/ Using std^:swap() function here
swap(nums[j], nums[j + 1]);

}
}

}
}

11.3.2 Efficiency Optimization

We notice that if no swap operations are performed during a certain round of “bubbling”, it means the
array has already completed sorting and can directly return the result. Therefore, we can add a flag
flag to monitor this situation and return immediately once it occurs.

After optimization, the worst-case time complexity and average time complexity of bubble sort re-
main𝑂(𝑛2); but when the input array is completely ordered, the best-case time complexity can reach
𝑂(𝑛).
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^/ ^^= File: bubble_sort.cpp ^^=

^* Bubble sort (flag optimization)^/
void bubbleSortWithFlag(vector<int> &nums) {

^/ Outer loop: unsorted range is [0, i]
for (int i = nums.size() - 1; i > 0; i--) {

bool flag = false; ^/ Initialize flag
^/ Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end

of that range↪
for (int j = 0; j < i; j^+) {

if (nums[j] > nums[j + 1]) {
^/ Swap nums[j] and nums[j + 1]
^/ Using std^:swap() function here
swap(nums[j], nums[j + 1]);
flag = true; ^/ Record element swap

}
}
if (!flag)

break; ^/ No elements were swapped in this round of "bubbling", exit directly
}

}

11.3.3 Algorithm Characteristics

• Time complexity of 𝑂(𝑛2), adaptive sorting: The array lengths traversed in each round of “bub-
bling” are 𝑛 − 1, 𝑛 − 2,…, 2, 1, totaling (𝑛 − 1)𝑛/2. After introducing the flag optimization, the
best-case time complexity can reach𝑂(𝑛).

• Space complexity of𝑂(1), in-place sorting: Pointers 𝑖 and 𝑗 use a constant amount of extra space.
• Stable sorting: Since equal elements are not swapped during “bubbling”.

11.4 Insertion Sort

Insertion sort (insertion sort) is a simple sorting algorithm that works very similarly to the process of
manually organizing a deck of cards.

Specifically, we select a base element from the unsorted interval, compare the element with elements
in the sorted interval to its left one by one, and insert the element into the correct position.

Figure 11-6 shows the operation flow of inserting an element into the array. Let the base element be
base. We need to move all elements from the target index to base one position to the right, and then
assign base to the target index.
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Figure 11-6 Single insertion operation

11.4.1 Algorithm Flow

The overall flow of insertion sort is shown in Figure 11-7.

1. Initially, the first element of the array has completed sorting.
2. Select the second element of the array as base, and after inserting it into the correct position, the
first 2 elements of the array are sorted.

3. Select the third element as base, and after inserting it into the correct position, the first 3 ele-
ments of the array are sorted.

4. And so on. In the last round, select the last element as base, and after inserting it into the correct
position, all elements are sorted.

Figure 11-7 Insertion sort flow
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Example code is as follows:

^/ ^^= File: insertion_sort.cpp ^^=

^* Insertion sort ^/
void insertionSort(vector<int> &nums) {

^/ Outer loop: sorted interval is [0, i-1]
for (int i = 1; i < nums.size(); i^+) {

int base = nums[i], j = i - 1;
^/ Inner loop: insert base into the correct position within the sorted interval [0, i-1]
while (j >= 0 ^& nums[j] > base) {

nums[j + 1] = nums[j]; ^/ Move nums[j] to the right by one position
j--;

}
nums[j + 1] = base; ^/ Assign base to the correct position

}
}

11.4.2 Algorithm Characteristics

• Time complexity of𝑂(𝑛2), adaptive sorting: In the worst case, each insertion operation requires
loops of 𝑛 − 1, 𝑛 − 2, …, 2, 1, summing to (𝑛 − 1)𝑛/2, so the time complexity is 𝑂(𝑛2). When
encountering ordered data, the insertion operation will terminate early. When the input array is
completely ordered, insertion sort achieves the best-case time complexity of𝑂(𝑛).

• Space complexity of𝑂(1), in-place sorting: Pointers 𝑖 and 𝑗 use a constant amount of extra space.
• Stable sorting: During the insertion operation process, we insert elements to the right of equal
elements, without changing their order.

11.4.3 Advantages of Insertion Sort

The time complexity of insertion sort is 𝑂(𝑛2), while the time complexity of quick sort, which we will
learn about next, is𝑂(𝑛 log𝑛). Although insertion sort has a higher time complexity, insertion sort is
usually faster for smaller data volumes.

This conclusion is similar to the applicable situations of linear search and binary search. Algorithms
like quick sortwith𝑂(𝑛 log𝑛) complexity are sorting algorithms based ondivide-and-conquer strategy
and often contain more unit computation operations. When the data volume is small, 𝑛2 and 𝑛 log𝑛
are numerically close, and complexity does not dominate; the number of unit operations per round
plays a decisive role.

In fact, the built-in sorting functions in many programming languages (such as Java) adopt insertion
sort. The general approach is: for long arrays, use sorting algorithms based on divide-and-conquer
strategy, such as quick sort; for short arrays, directly use insertion sort.

Although bubble sort, selection sort, and insertion sort all have a time complexity of 𝑂(𝑛2), in actual
situations, insertion sort is used significantly more frequently than bubble sort and selection sort,
mainly for the following reasons.

• Bubble sort is based on element swapping, requiring the use of a temporary variable, involving
3 unit operations; insertion sort is based on element assignment, requiring only 1 unit operation.
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Therefore, the computational overhead of bubble sort is usually higher than that of insertion
sort.

• Selection sort has a time complexity of𝑂(𝑛2) in any case. If given a set of partially ordered data,
insertion sort is usually more efficient than selection sort.

• Selection sort is unstable and cannot be applied to multi-level sorting.

11.5 Quick Sort

Quick sort (quick sort) is a sorting algorithm based on the divide-and-conquer strategy, which operates
efficiently and is widely applied.

The core operation of quick sort is “sentinel partitioning”, which aims to: select a certain element in
the array as the “pivot”, move all elements smaller than the pivot to its left, and move elements larger
than the pivot to its right. Specifically, the flow of sentinel partitioning is shown in Figure 11-8.

1. Select the leftmost element of the array as the pivot, and initialize two pointers i and j pointing
to the two ends of the array.

2. Set up a loop in which i (j) is used in each round to find the first element larger (smaller) than the
pivot, and then swap these two elements.

3. Loop through step 2. until i and j meet, and finally swap the pivot to the boundary line of the
two sub-arrays.
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Figure 11-8 Sentinel partitioning steps

After sentinel partitioning is complete, the original array is divided into three parts: left sub-array,
pivot, right sub-array, satisfying “any element in left sub-array ≤ pivot ≤ any element in right sub-
array”. Therefore, we next only need to sort these two sub-arrays.

Divide-and-conquer strategy of quick sort
The essence of sentinel partitioning is to simplify the sorting problem of a longer array into the
sorting problems of two shorter arrays.

^/ ^^= File: quick_sort.cpp ^^=

^* Sentinel partition ^/
int partition(vector<int> &nums, int left, int right) {

^/ Use nums[left] as the pivot
int i = left, j = right;
while (i < j) {

while (i < j ^& nums[j] >= nums[left])
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j--; ^/ Search from right to left for the first element smaller than
the pivot↪

while (i < j ^& nums[i] <= nums[left])
i^+; ^/ Search from left to right for the first element greater than

the pivot↪
swap(nums[i], nums[j]); ^/ Swap these two elements

}
swap(nums[i], nums[left]); ^/ Swap the pivot to the boundary between the two subarrays
return i; ^/ Return the index of the pivot

}

11.5.1 Algorithm Flow

The overall flow of quick sort is shown in Figure 11-9.

1. First, perform one “sentinel partitioning” on the original array to obtain the unsorted left sub-
array and right sub-array.

2. Then, recursively perform “sentinel partitioning” on the left sub-array and right sub-array respec-
tively.

3. Continue recursively until the sub-array length is 1, at which point sorting of the entire array is
complete.

Figure 11-9 Quick sort flow

^/ ^^= File: quick_sort.cpp ^^=

^* Quick sort ^/
void quickSort(vector<int> &nums, int left, int right) {

^/ Terminate recursion when subarray length is 1
if (left >= right)

return;
^/ Sentinel partition



Chapter 11. Sorting www.hello-algo.com 249

int pivot = partition(nums, left, right);
^/ Recursively process the left subarray and right subarray
quickSort(nums, left, pivot - 1);
quickSort(nums, pivot + 1, right);

}

11.5.2 Algorithm Characteristics

• Time complexity of 𝑂(𝑛 log𝑛), non-adaptive sorting: In the average case, the number of recur-
sive levels of sentinel partitioning is log𝑛, and the total number of loops at each level is 𝑛, using
𝑂(𝑛 log𝑛) time overall. In the worst case, each round of sentinel partitioning divides an array of
length 𝑛 into two sub-arrays of length 0 and 𝑛 − 1, at which point the number of recursive levels
reaches 𝑛, the number of loops at each level is 𝑛, and the total time used is𝑂(𝑛2).

• Space complexity of 𝑂(𝑛), in-place sorting: In the case where the input array is completely re-
versed, the worst recursive depth reaches𝑛, using𝑂(𝑛) stack frame space. The sorting operation
is performed on the original array without the aid of an additional array.

• Non-stable sorting: In the last step of sentinel partitioning, the pivot may be swapped to the right
of equal elements.

11.5.3 Why Is Quick Sort Fast

From the name, we can see that quick sort should have certain advantages in terms of efficiency. Al-
though the average time complexity of quick sort is the same as “merge sort” and “heap sort”, quick
sort is usually more efficient, mainly for the following reasons.

• The probability of theworst case occurring is very low: Although theworst-case time complexity
of quick sort is 𝑂(𝑛2), which is not as stable as merge sort, in the vast majority of cases, quick
sort can run with a time complexity of𝑂(𝑛 log𝑛).

• High cache utilization: When performing sentinel partitioning operations, the system can load
the entire sub-array into the cache, so element access efficiency is relatively high. Algorithms like
“heap sort” require jump-style access to elements, thus lacking this characteristic.
• Small constant coefficient of complexity: Among the three algorithms mentioned above, quick
sort has the smallest total number of operations such as comparisons, assignments, and swaps.
This is similar to the reason why “insertion sort” is faster than “bubble sort”.

11.5.4 Pivot Optimization

Quick sort may have reduced time efficiency for certain inputs. Take an extreme example: suppose
the input array is completely reversed. Since we select the leftmost element as the pivot, after sentinel
partitioning is complete, the pivot is swapped to the rightmost end of the array, causing the left sub-
array length to be 𝑛−1 and the right sub-array length to be 0. If we recurse down like this, each round
of sentinel partitioning will have a sub-array length of 0, the divide-and-conquer strategy fails, and
quick sort degrades to a form approximate to “bubble sort”.
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To avoid this situation as much as possible, we can optimize the pivot selection strategy in sentinel
partitioning. For example, we can randomly select an element as the pivot. However, if luck is not good
and we select a non-ideal pivot every time, efficiency is still not satisfactory.

It should be noted that programming languages usually generate “pseudo-random numbers”. If we
construct a specific test case for a pseudo-random number sequence, the efficiency of quick sort may
still degrade.

For further improvement, we can select three candidate elements in the array (usually the first, last,
and middle elements of the array), and use the median of these three candidate elements as the pivot.
In this way, the probability that the pivot is “neither too small nor too large” will be greatly increased. Of
course, we can also select more candidate elements to further improve the robustness of the algorithm.
After adopting this method, the probability of time complexity degrading to𝑂(𝑛2) is greatly reduced.
Example code is as follows:

^/ ^^= File: quick_sort.cpp ^^=

^* Select the median of three candidate elements ^/
int medianThree(vector<int> &nums, int left, int mid, int right) {

int l = nums[left], m = nums[mid], r = nums[right];
if ((l <= m ^& m <= r) ^| (r <= m ^& m <= l))

return mid; ^/ m is between l and r
if ((m <= l ^& l <= r) ^| (r <= l ^& l <= m))

return left; ^/ l is between m and r
return right;

}

^* Sentinel partition (median of three) ^/
int partition(vector<int> &nums, int left, int right) {

^/ Select the median of three candidate elements
int med = medianThree(nums, left, (left + right) / 2, right);
^/ Swap the median to the array's leftmost position
swap(nums[left], nums[med]);
^/ Use nums[left] as the pivot
int i = left, j = right;
while (i < j) {

while (i < j ^& nums[j] >= nums[left])
j--; ^/ Search from right to left for the first element smaller than

the pivot↪
while (i < j ^& nums[i] <= nums[left])

i^+; ^/ Search from left to right for the first element greater than
the pivot↪

swap(nums[i], nums[j]); ^/ Swap these two elements
}
swap(nums[i], nums[left]); ^/ Swap the pivot to the boundary between the two subarrays
return i; ^/ Return the index of the pivot

}

11.5.5 Recursive Depth Optimization

For certain inputs, quick sort may occupy more space. Taking a completely ordered input array as
an example, let the length of the sub-array in recursion be 𝑚. Each round of sentinel partitioning
will produce a left sub-array of length 0 and a right sub-array of length 𝑚 − 1, which means that the
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problem scale reduced per recursive call is very small (only one element is reduced), and the height of
the recursion tree will reach 𝑛 − 1, at which point𝑂(𝑛) size of stack frame space is required.
To prevent the accumulation of stack frame space, we can compare the lengths of the two sub-arrays
after each round of sentinel sorting is complete, and only recurse on the shorter sub-array. Since the
length of the shorter sub-array will not exceed 𝑛/2, this method can ensure that the recursion depth
does not exceed log𝑛, thus optimizing the worst-case space complexity to 𝑂(log𝑛). The code is as
follows:

^/ ^^= File: quick_sort.cpp ^^=

^* Quick sort (recursion depth optimization) ^/
void quickSort(vector<int> &nums, int left, int right) {

^/ Terminate when subarray length is 1
while (left < right) {

^/ Sentinel partition operation
int pivot = partition(nums, left, right);
^/ Perform quick sort on the shorter of the two subarrays
if (pivot - left < right - pivot) {

quickSort(nums, left, pivot - 1); ^/ Recursively sort the left subarray
left = pivot + 1; ^/ Remaining unsorted interval is [pivot + 1, right]

} else {
quickSort(nums, pivot + 1, right); ^/ Recursively sort the right subarray
right = pivot - 1; ^/ Remaining unsorted interval is [left, pivot - 1]

}
}

}

11.6 Merge Sort

Merge sort (merge sort) is a sorting algorithm based on the divide-and-conquer strategy, which in-
cludes the “divide” and “merge” phases shown in Figure 11-10.

1. Divide phase: Recursively split the array from the midpoint, transforming the sorting problem of
a long array into the sorting problems of shorter arrays.

2. Merge phase: When the sub-array length is 1, terminate the division and start merging, continu-
ouslymerging two shorter sorted arrays into one longer sorted array until the process is complete.



Chapter 11. Sorting www.hello-algo.com 252

Figure 11-10 Divide and merge phases of merge sort

11.6.1 Algorithm Flow

As shown in Figure 11-11, the “divide phase” recursively splits the array from the midpoint into two sub-
arrays from top to bottom.

1. Calculate the array midpoint mid, recursively divide the left sub-array (interval [left, mid]) and
right sub-array (interval [mid + 1, right]).

2. Recursively execute step 1. until the sub-array interval length is 1, then terminate.

The “merge phase” merges the left sub-array and right sub-array into a sorted array from bottom to
top. Note that merging starts from sub-arrays of length 1, and each sub-array in the merge phase is
sorted.
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Figure 11-11 Merge sort steps

It can be observed that the recursive order of merge sort is consistent with the post-order traversal of
a binary tree.

• Post-order traversal: First recursively traverse the left subtree, then recursively traverse the right
subtree, and finally process the root node.

• Merge sort: First recursively process the left sub-array, then recursively process the right sub-
array, and finally perform the merge.

The implementation of merge sort is shown in the code below. Note that the interval to be merged in
nums is [left, right], while the corresponding interval in tmp is [0, right - left].
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^/ ^^= File: merge_sort.cpp ^^=

^* Merge left subarray and right subarray ^/
void merge(vector<int> &nums, int left, int mid, int right) {

^/ Left subarray interval is [left, mid], right subarray interval is [mid+1, right]
^/ Create a temporary array tmp to store the merged results
vector<int> tmp(right - left + 1);
^/ Initialize the start indices of the left and right subarrays
int i = left, j = mid + 1, k = 0;
^/ While both subarrays still have elements, compare and copy the smaller element into the

temporary array↪
while (i <= mid ^& j <= right) {

if (nums[i] <= nums[j])
tmp[k^+] = nums[i^+];

else
tmp[k^+] = nums[j^+];

}
^/ Copy the remaining elements of the left and right subarrays into the temporary array
while (i <= mid) {

tmp[k^+] = nums[i^+];
}
while (j <= right) {

tmp[k^+] = nums[j^+];
}
^/ Copy the elements from the temporary array tmp back to the original array nums at the

corresponding interval↪
for (k = 0; k < tmp.size(); k^+) {

nums[left + k] = tmp[k];
}

}

^* Merge sort ^/
void mergeSort(vector<int> &nums, int left, int right) {

^/ Termination condition
if (left >= right)

return; ^/ Terminate recursion when subarray length is 1
^/ Divide and conquer stage
int mid = left + (right - left) / 2; ^/ Calculate midpoint
mergeSort(nums, left, mid); ^/ Recursively process the left subarray
mergeSort(nums, mid + 1, right); ^/ Recursively process the right subarray
^/ Merge stage
merge(nums, left, mid, right);

}

11.6.2 Algorithm Characteristics

• Time complexity of 𝑂(𝑛 log𝑛), non-adaptive sorting: The division produces a recursion tree
of height log𝑛, and the total number of merge operations at each level is 𝑛, so the overall time
complexity is𝑂(𝑛 log𝑛).

• Space complexity of 𝑂(𝑛), non-in-place sorting: The recursion depth is log𝑛, using 𝑂(log𝑛)
size of stack frame space. The merge operation requires the aid of an auxiliary array, using𝑂(𝑛)
size of additional space.

• Stable sorting: In the merge process, the order of equal elements remains unchanged.
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11.6.3 Linked List Sorting

For linked lists, merge sort has significant advantages over other sorting algorithms, and can optimize
the space complexity of linked list sorting tasks to𝑂(1).

• Divide phase: “Iteration” can be used instead of “recursion” to implement linked list division work,
thus saving the stack frame space used by recursion.

• Merge phase: In linked lists, node insertion and deletion operations can be achieved by just chang-
ing references (pointers), so there is no need to create additional linked lists during the merge
phase (merging two short ordered linked lists into one long ordered linked list).

The specific implementation details are quite complex, and interested readers can consult related ma-
terials for learning.

11.7 Heap Sort

Tip
Before reading this section, please ensure you have completed the “Heap” chapter.

Heap sort (heap sort) is an efficient sorting algorithm based on the heap data structure. We can use the
“build heap operation” and “element out-heap operation” that we have already learned to implement
heap sort.

1. Input the array and build a min-heap, at which point the smallest element is at the heap top.
2. Continuously perform the out-heap operation, record the out-heap elements in sequence, and
an ascending sorted sequence can be obtained.

Although the above method is feasible, it requires an additional array to save the popped elements,
which is quite wasteful of space. In practice, we usually use a more elegant implementation method.

11.7.1 Algorithm Flow

Assume the array length is 𝑛. The flow of heap sort is shown in Figure 11-12.
1. Input the array and build a max-heap. After completion, the largest element is at the heap top.
2. Swap the heap top element (first element) with the heap bottom element (last element). After the
swap is complete, reduce the heap length by 1 and increase the count of sorted elements by 1.

3. Starting from the heap top element, perform top-to-bottom heapify operation (sift down). After
heapify is complete, the heap property is restored.

4. Loop through steps 2. and 3. After looping 𝑛 − 1 rounds, the array sorting can be completed.

Tip
In fact, the element out-heap operation also includes steps 2. and 3., with just an additional
step to pop the element.
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Figure 11-12 Heap sort steps

In the code implementation, we use the same top-to-bottom heapify function sift_down() from the
“Heap” chapter. It is worth noting that since the heap length will decrease as the largest element is
extracted, we need to add a length parameter 𝑛 to the sift_down() function to specify the current
effective length of the heap. The code is as follows:

^/ ^^= File: heap_sort.cpp ^^=

^* Heap length is n, start heapifying node i, from top to bottom ^/
void siftDown(vector<int> &nums, int n, int i) {

while (true) {
^/ If node i is largest or indices l, r are out of bounds, no need to continue heapify,

break↪
int l = 2 * i + 1;
int r = 2 * i + 2;
int ma = i;
if (l < n ^& nums[l] > nums[ma])

ma = l;
if (r < n ^& nums[r] > nums[ma])

ma = r;
^/ Swap two nodes
if (ma ^= i) {

break;
}
^/ Swap two nodes
swap(nums[i], nums[ma]);
^/ Loop downwards heapification
i = ma;

}
}

^* Heap sort ^/
void heapSort(vector<int> &nums) {

^/ Build heap operation: heapify all nodes except leaves
for (int i = nums.size() / 2 - 1; i >= 0; --i) {

siftDown(nums, nums.size(), i);
}
^/ Extract the largest element from the heap and repeat for n-1 rounds
for (int i = nums.size() - 1; i > 0; --i) {

^/ Delete node
swap(nums[0], nums[i]);
^/ Start heapifying the root node, from top to bottom
siftDown(nums, i, 0);
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}
}

11.7.2 Algorithm Characteristics

• Time complexity of 𝑂(𝑛 log𝑛), non-adaptive sorting: The build heap operation uses 𝑂(𝑛) time.
Extracting the largest element from the heap has a time complexity of 𝑂(log𝑛), looping a total
of 𝑛 − 1 rounds.

• Space complexity of 𝑂(1), in-place sorting: A few pointer variables use 𝑂(1) space. Element
swapping and heapify operations are both performed on the original array.

• Non-stable sorting: When swapping the heap top element and heap bottom element, the relative
positions of equal elements may change.

11.8 Bucket Sort

The several sorting algorithms mentioned earlier all belong to “comparison-based sorting algorithms”,
which achieve sorting by comparing the size of elements. The time complexity of such sorting algo-
rithms cannot exceed 𝑂(𝑛 log𝑛). Next, we will explore several “non-comparison sorting algorithms”,
whose time complexity can reach linear order.

Bucket sort (bucket sort) is a typical application of the divide-and-conquer strategy. It works by setting
up buckets with size order, each bucket corresponding to a data range, evenly distributing data to
each bucket; then, sorting within each bucket separately; finally, merging all data in the order of the
buckets.

11.8.1 Algorithm Flow

Consider an array of length 𝑛, whose elements are floating-point numbers in the range [0, 1). The flow
of bucket sort is shown in Figure 11-13.

1. Initialize 𝑘 buckets and distribute the 𝑛 elements into the 𝑘 buckets.
2. Sort each bucket separately (here we use the built-in sorting function of the programming lan-
guage).

3. Merge the results in order from smallest to largest bucket.
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Figure 11-13 Bucket sort algorithm flow

The code is as follows:

^/ ^^= File: bucket_sort.cpp ^^=

^* Bucket sort ^/
void bucketSort(vector<float> &nums) {

^/ Initialize k = n/2 buckets, expected to allocate 2 elements per bucket
int k = nums.size() / 2;
vector<vector<float>> buckets(k);
^/ 1. Distribute array elements into various buckets
for (float num : nums) {

^/ Input data range is [0, 1), use num * k to map to index range [0, k-1]
int i = num * k;
^/ Add num to bucket bucket_idx
buckets[i].push_back(num);

}
^/ 2. Sort each bucket
for (vector<float> &bucket : buckets) {

^/ Use built-in sorting function, can also replace with other sorting algorithms
sort(bucket.begin(), bucket.end());

}
^/ 3. Traverse buckets to merge results
int i = 0;
for (vector<float> &bucket : buckets) {

for (float num : bucket) {
nums[i^+] = num;

}
}

}

11.8.2 Algorithm Characteristics

Bucket sort is suitable for processing very large data volumes. For example, if the input data contains
1 million elements and system memory cannot load all the data at once, the data can be divided into
1000 buckets, each bucket sorted separately, and then the results merged.

• Time complexity of 𝑂(𝑛 + 𝑘): Assuming the elements are evenly distributed among the buck-
ets, then the number of elements in each bucket is 𝑛

𝑘 . Assuming sorting a single bucket uses
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𝑂(𝑛
𝑘 log

𝑛
𝑘 ) time, then sorting all buckets uses 𝑂(𝑛 log 𝑛

𝑘 ) time. When the number of buckets 𝑘
is relatively large, the time complexity approaches𝑂(𝑛). Merging results requires traversing all
buckets and elements, taking 𝑂(𝑛 + 𝑘) time. In the worst case, all data is distributed into one
bucket, and sorting that bucket uses𝑂(𝑛2) time.

• Space complexity of 𝑂(𝑛 + 𝑘), non-in-place sorting: Additional space is required for 𝑘 buckets
and a total of 𝑛 elements.

• Whether bucket sort is stable depends on whether the algorithm for sorting elements within
buckets is stable.

11.8.3 How to Achieve Even Distribution

Theoretically, bucket sort can achieve𝑂(𝑛) time complexity. The key is to evenly distribute elements
to each bucket, because real data is often not evenly distributed. For example, if we want to evenly
distribute all products on Taobao into 10 buckets by price range, there may be very many products
below 100 yuan and very few above 1000 yuan. If the price intervals are evenly divided into 10, the
difference in the number of products in each bucket will be very large.

To achieve even distribution, we can first set an approximate dividing line to roughly divide the data
into 3 buckets. After distribution is complete, continue dividing buckets with more products into 3
buckets until the number of elements in all buckets is roughly equal.

As shown in Figure 11-14, this method essentially creates a recursion tree, with the goal of making the
values of leaf nodes as even as possible. Of course, it is not necessary to divide the data into 3 buckets
every round; the specific division method can be flexibly chosen according to data characteristics.

Figure 11-14 Recursively dividing buckets

If we know the probability distribution of product prices in advance, we can set the price dividing line
for each bucket based on the data probability distribution. It is worth noting that the data distribution
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does not necessarily need to be specifically calculated, but can also be approximated using a certain
probability model based on data characteristics.

As shown in Figure 11-15, we assume that product prices follow a normal distribution, which allows us
to reasonably set price intervals to evenly distribute products to each bucket.

Figure 11-15 Dividing buckets based on probability distribution

11.9 Counting Sort

Counting sort (counting sort) achieves sorting by counting the number of elements, typically applied
to integer arrays.

11.9.1 Simple Implementation

Let’s start with a simple example. Given an array nums of length 𝑛, where the elements are all “non-
negative integers”, the overall flow of counting sort is shown in Figure 11-16.

1. Traverse the array to find the largest number, denoted as 𝑚, and then create an auxiliary array
counter of length𝑚 + 1.

2. Use counter to count the number of occurrences of each number in nums, where counter[num]
corresponds to the number of occurrences of the number num. The counting method is simple:
just traverse nums (let the current number be num), and increase counter[num] by 1 in each round.

3. Since each index of counter is naturally ordered, this is equivalent to all numbers being sorted.
Next, we traverse counter and fill in nums in ascending order based on the number of occurrences
of each number.
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Figure 11-16 Counting sort flow

The code is as follows:

^/ ^^= File: counting_sort.cpp ^^=

^* Counting sort ^/
^/ Simple implementation, cannot be used for sorting objects
void countingSortNaive(vector<int> &nums) {

^/ 1. Count the maximum element m in the array
int m = 0;
for (int num : nums) {

m = max(m, num);
}
^/ 2. Count the occurrence of each number
^/ counter[num] represents the occurrence of num
vector<int> counter(m + 1, 0);
for (int num : nums) {

counter[num]^+;
}
^/ 3. Traverse counter, filling each element back into the original array nums
int i = 0;
for (int num = 0; num < m + 1; num^+) {

for (int j = 0; j < counter[num]; j^+, i^+) {
nums[i] = num;

}
}

}

Connection between counting sort and bucket sort
From the perspective of bucket sort, we can regard each index of the counting array counter in
counting sort as a bucket, and the process of counting quantities as distributing each element to
the corresponding bucket. Essentially, counting sort is a special case of bucket sort for integer
data.
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11.9.2 Complete Implementation

Observant readers may have noticed that if the input data is objects, step 3. above becomes invalid.
Suppose the input data is product objects, andwewant to sort the products by price (amember variable
of the class), but the above algorithm can only give the sorting result of prices.

So how can we obtain the sorting result of the original data? We first calculate the “prefix sum” of
counter. As the name suggests, the prefix sum at index i, prefix[i], equals the sum of the first i
elements of the array:

prefix[𝑖] =
𝑖

∑
𝑗=0

counter[ j]

The prefix sum has a clear meaning: prefix[num] - 1 represents the index of the last occurrence
of element num in the result array res. This information is very critical because it tells us where each
element should appear in the result array. Next, we traverse each element num of the original array
nums in reverse order, performing the following two steps in each iteration.

1. Fill num into the array res at index prefix[num] - 1.
2. Decrease the prefix sum prefix[num] by 1 to get the index for the next placement of num.

After the traversal is complete, the array res contains the sorted result, and finally res is used to over-
write the original array nums. The complete counting sort flow is shown in Figure 11-17.
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Figure 11-17 Counting sort steps

The implementation code of counting sort is as follows:

^/ ^^= File: counting_sort.cpp ^^=

^* Counting sort ^/
^/ Complete implementation, can sort objects and is a stable sort
void countingSort(vector<int> &nums) {

^/ 1. Count the maximum element m in the array
int m = 0;
for (int num : nums) {

m = max(m, num);
}
^/ 2. Count the occurrence of each number
^/ counter[num] represents the occurrence of num
vector<int> counter(m + 1, 0);
for (int num : nums) {

counter[num]^+;
}
^/ 3. Calculate the prefix sum of counter, converting "occurrence count" to "tail index"
^/ counter[num]-1 is the last index where num appears in res
for (int i = 0; i < m; i^+) {

counter[i + 1] += counter[i];
}
^/ 4. Traverse nums in reverse order, placing each element into the result array res
^/ Initialize the array res to record results
int n = nums.size();
vector<int> res(n);
for (int i = n - 1; i >= 0; i--) {

int num = nums[i];
res[counter[num] - 1] = num; ^/ Place num at the corresponding index
counter[num]--; ^/ Decrement the prefix sum by 1, getting the next index to

place num↪
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}
^/ Use result array res to overwrite the original array nums
nums = res;

}

11.9.3 Algorithm Characteristics

• Time complexity of 𝑂(𝑛 + 𝑚), non-adaptive sorting: Involves traversing nums and traversing
counter, both using linear time. Generally, 𝑛 ≫ 𝑚, and time complexity tends toward𝑂(𝑛).

• Space complexity of𝑂(𝑛 + 𝑚), non-in-place sorting: Uses arrays res and counter of lengths 𝑛
and𝑚 respectively.

• Stable sorting: Since elements are filled into res in a “right-to-left” order, traversing nums in re-
verse can avoid changing the relative positions of equal elements, thereby achieving stable sorting.
In fact, traversing nums in forward order can also yield correct sorting results, but the result would
be unstable.

11.9.4 Limitations

By this point, you might think counting sort is very clever, as it can achieve efficient sorting just by
counting quantities. However, the prerequisites for using counting sort are relatively strict.

Counting sort is only suitable for non-negative integers. If you want to apply it to other types of
data, you need to ensure that the data can be converted to non-negative integers without changing
the relative size relationships between elements. For example, for an integer array containing negative
numbers, you can first add a constant to all numbers to convert them all to positive numbers, and then
convert them back after sorting is complete.

Counting sort is suitable for situations where the data volume is large but the data range is small.
For example, in the above example, 𝑚 cannot be too large, otherwise it will occupy too much space.
And when 𝑛 ≪ 𝑚, counting sort uses 𝑂(𝑚) time, which may be slower than 𝑂(𝑛 log𝑛) sorting algo-
rithms.

11.10 Radix Sort

The previous section introduced counting sort, which is suitable for situations where the data volume
𝑛 is large but the data range𝑚 is small. Suppose we need to sort 𝑛 = 106 student IDs, and the student
ID is an 8-digit number, which means the data range𝑚 = 108 is very large. Using counting sort would
require allocating a large amount of memory space, whereas radix sort can avoid this situation.

Radix sort (radix sort) has a core idea consistent with counting sort, which also achieves sorting by
counting quantities. Building on this, radix sort utilizes the progressive relationship between the digits
of numbers, sorting each digit in turn to obtain the final sorting result.
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11.10.1 Algorithm Flow

Taking student ID data as an example, assume the lowest digit is the 1st digit and the highest digit is
the 8th digit. The flow of radix sort is shown in Figure 11-18.
1. Initialize the digit 𝑘 = 1.
2. Perform “counting sort” on the 𝑘th digit of the student IDs. After completion, the data will be
sorted from smallest to largest according to the 𝑘th digit.

3. Increase 𝑘 by 1, then return to step 2. and continue iterating until all digits are sorted, at which
point the process ends.

Figure 11-18 Radix sort algorithm flow

Belowwe analyze the code implementation. For a 𝑑-base number𝑥, to get its 𝑘th digit𝑥𝑘, the following
calculation formula can be used:

𝑥𝑘 = ⌊ 𝑥
𝑑𝑘−1 ⌋ mod 𝑑

Where ⌊𝑎⌋ denotes rounding down the floating-point number 𝑎, and mod 𝑑 denotes taking themodulo
(remainder) with respect to 𝑑. For student ID data, 𝑑 = 10 and 𝑘 ∈ [1, 8].
Additionally, we need to slightly modify the counting sort code to make it sort based on the 𝑘th digit
of the number:

^/ ^^= File: radix_sort.cpp ^^=

^* Get the k-th digit of element num, where exp = 10^(k-1) ^/
int digit(int num, int exp) {

^/ Passing exp instead of k can avoid repeated expensive exponentiation here
return (num / exp) % 10;

}
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^* Counting sort (based on nums k-th digit) ^/
void countingSortDigit(vector<int> &nums, int exp) {

^/ Decimal digit range is 0~9, therefore need a bucket array of length 10
vector<int> counter(10, 0);
int n = nums.size();
^/ Count the occurrence of digits 0~9
for (int i = 0; i < n; i^+) {

int d = digit(nums[i], exp); ^/ Get the k-th digit of nums[i], noted as d
counter[d]^+; ^/ Count the occurrence of digit d

}
^/ Calculate prefix sum, converting "occurrence count" into "array index"
for (int i = 1; i < 10; i^+) {

counter[i] += counter[i - 1];
}
^/ Traverse in reverse, based on bucket statistics, place each element into res
vector<int> res(n, 0);
for (int i = n - 1; i >= 0; i--) {

int d = digit(nums[i], exp);
int j = counter[d] - 1; ^/ Get the index j for d in the array
res[j] = nums[i]; ^/ Place the current element at index j
counter[d]--; ^/ Decrease the count of d by 1

}
^/ Use result to overwrite the original array nums
for (int i = 0; i < n; i^+)

nums[i] = res[i];
}

^* Radix sort ^/
void radixSort(vector<int> &nums) {

^/ Get the maximum element of the array, used to determine the maximum number of digits
int m = *max_element(nums.begin(), nums.end());
^/ Traverse from the lowest to the highest digit
for (int exp = 1; exp <= m; exp *= 10)

^/ Perform counting sort on the k-th digit of array elements
^/ k = 1 -> exp = 1
^/ k = 2 -> exp = 10
^/ i.e., exp = 10^(k-1)
countingSortDigit(nums, exp);

}

Why start sorting from the lowest digit?
In successive sorting rounds, the result of a later roundwill override the result of an earlier round.
For example, if the first round result is 𝑎 < 𝑏, while the second round result is 𝑎 > 𝑏, then the
second round’s result will replace the first round’s result. Since higher-order digits have higher
priority than lower-order digits, we should sort the lower digits first and then sort the higher
digits.

11.10.2 Algorithm Characteristics

Compared to counting sort, radix sort is suitable for larger numerical ranges, but the prerequisite is
that the data must be representable in a fixed number of digits, and the number of digits should not
be too large. For example, floating-point numbers are not suitable for radix sort because their number
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of digits 𝑘 may be too large, potentially leading to time complexity𝑂(𝑛𝑘) ≫ 𝑂(𝑛2).
• Time complexity of 𝑂(𝑛𝑘), non-adaptive sorting: Let the data volume be 𝑛, the data be in base

𝑑, and the maximum number of digits be 𝑘. Then performing counting sort on a certain digit uses
𝑂(𝑛+𝑑) time, and sorting all 𝑘 digits uses𝑂((𝑛+𝑑)𝑘) time. Typically, both 𝑑 and 𝑘 are relatively
small, and the time complexity approaches𝑂(𝑛).

• Space complexity of𝑂(𝑛 + 𝑑), non-in-place sorting: Same as counting sort, radix sort requires
auxiliary arrays res and counter of lengths 𝑛 and 𝑑.

• Stable sorting: When counting sort is stable, radix sort is also stable; when counting sort is un-
stable, radix sort cannot guarantee obtaining correct sorting results.

11.11 Summary

1. Key Review

• Bubble sort achieves sorting by swapping adjacent elements. By adding a flag to enable early
return, we can optimize the best-case time complexity of bubble sort to𝑂(𝑛).

• Insertion sort completes sorting by inserting elements from the unsorted interval into the cor-
rect position in the sorted interval each round. Although the time complexity of insertion sort is
𝑂(𝑛2), it is very popular in small data volume sorting tasks because it involves relatively few unit
operations.

• Quick sort is implemented based on sentinel partitioning operations. In sentinel partitioning,
it is possible to select the worst pivot every time, causing the time complexity to degrade to
𝑂(𝑛2). Introducing median pivot or random pivot can reduce the probability of such degradation.
By preferentially recursing on the shorter sub-interval, the recursion depth can be effectively
reduced, optimizing the space complexity to𝑂(log𝑛).

• Merge sort includes two phases: divide and merge, which typically embody the divide-and-
conquer strategy. In merge sort, sorting an array requires creating auxiliary arrays, with a space
complexity of 𝑂(𝑛); however, the space complexity of sorting a linked list can be optimized to
𝑂(1).

• Bucket sort consists of three steps: distributing data into buckets, sorting within buckets, and
merging results. It also embodies the divide-and-conquer strategy and is suitable for very large
data volumes. The key to bucket sort is distributing data evenly.

• Counting sort is a special case of bucket sort, which achieves sorting by counting the number of
occurrences of data. Counting sort is suitable for situations where the data volume is large but
the data range is limited, and requires that data can be converted to positive integers.

• Radix sort achieves data sorting by sorting digit by digit, requiring that data can be represented
as fixed-digit numbers.

• Overall, we hope to find a sorting algorithm that is efficient, stable, in-place, and adaptive, with
good versatility. However, just like other data structures and algorithms, no sorting algorithm has
been found so far that simultaneously possesses all these characteristics. In practical applications,
we need to select the appropriate sorting algorithm based on the specific characteristics of the
data.



Chapter 11. Sorting www.hello-algo.com 269

• Figure 11-19 compares mainstream sorting algorithms in terms of efficiency, stability, in-place
property, and adaptability.

Figure 11-19 Sorting algorithm comparison

2. Q & A

Q: In what situations is the stability of sorting algorithms necessary?

In reality, we may sort based on a certain attribute of objects. For example, students have two
attributes: name and height. We want to implement multi-level sorting: first sort by name to get
(A, 180) (B, 185) (C, 170) (D, 170); then sort by height. Because the sorting algorithm is
unstable, we may get (D, 170) (C, 170) (A, 180) (B, 185).

It can be seen that the positions of students D and C have been swapped, and the orderliness of names
has been disrupted, which is something we don’t want to see.

Q: Can the order of “searching from right to left” and “searching from left to right” in sentinel partition-
ing be swapped?

No. When we use the leftmost element as the pivot, we must first “search from right to left” and then
“search from left to right”. This conclusion is somewhat counterintuitive; let’s analyze the reason.

The last step of sentinel partitioning partition() is to swap nums[left] and nums[i]. After the
swap is complete, the elements to the left of the pivot are all <= the pivot, which requires that
nums[left] >= nums[i] must hold before the last swap. Suppose we first “search from left to right”,
then if we cannot find an element larger than the pivot, we will exit the loop when i ^= j, at which
point it may be that nums[j] ^= nums[i] > nums[left]. In other words, the last swap operation will
swap an element larger than the pivot to the leftmost end of the array, causing sentinel partitioning to
fail.
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For example, given the array [0, 0, 0, 0, 1], if we first “search from left to right”, the array after
sentinel partitioning is [1, 0, 0, 0, 0], which is incorrect.

Thinking deeper, if we select nums[right] as the pivot, then it’s exactly the opposite - we must first
“search from left to right”.

Q: Regarding the optimization of recursion depth in quick sort, why can selecting the shorter array
ensure that the recursion depth does not exceed log𝑛?
The recursion depth is the number of currently unreturned recursive methods. Each round of sentinel
partitioning divides the original array into two sub-arrays. After recursion depth optimization, the
length of the sub-array to be recursively processed is atmost half of the original array length. Assuming
the worst case is always half the length, the final recursion depth will be log𝑛.
Reviewing the original quick sort, we may continuously recurse on the longer array. In the worst case,
it would be 𝑛, 𝑛 − 1,…, 2, 1, with a recursion depth of 𝑛. Recursion depth optimization can avoid this
situation.

Q: When all elements in the array are equal, is the time complexity of quick sort 𝑂(𝑛2)? How should
this degenerate case be handled?

Yes. For this situation, consider partitioning the array into three parts through sentinel partitioning:
less than, equal to, and greater than the pivot. Only recursively process the less than and greater than
parts. Under this method, an array where all input elements are equal can complete sorting in just one
round of sentinel partitioning.

Q: Why is the worst-case time complexity of bucket sort𝑂(𝑛2)?
In the worst case, all elements are distributed into the same bucket. If we use an 𝑂(𝑛2) algorithm to
sort these elements, the time complexity will be𝑂(𝑛2).



271

Chapter 12. Divide and Conquer

Abstract
Difficult problems are decomposed layer by layer, with each decomposition making them sim-
pler.
Divide and conquer reveals an important truth: start with simplicity, and nothing remains com-
plex.
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12.1 Divide and Conquer Algorithms

Divide and conquer is a very important and common algorithm strategy. Divide and conquer is typically
implemented based on recursion, consisting of two steps: “divide” and “conquer”.

1. Divide (partition phase): Recursively divide the original problem into two or more subproblems
until the smallest subproblem is reached.

2. Conquer (merge phase): Starting from the smallest subproblemswith known solutions, merge the
solutions of subproblems from bottom to top to construct the solution to the original problem.

As shown in Figure 12-1, “merge sort” is one of the typical applications of the divide and conquer strat-
egy.

1. Divide: Recursively divide the original array (original problem) into two subarrays (subproblems)
until the subarray has only one element (smallest subproblem).

2. Conquer: Merge the sorted subarrays (solutions to subproblems) from bottom to top to obtain a
sorted original array (solution to the original problem).

Figure 12-1 Divide and conquer strategy of merge sort

12.1.1 How to Determine Divide and Conquer Problems

Whether a problem is suitable for solving with divide and conquer can usually be determined based on
the following criteria.

1. The problem can be decomposed: The original problem can be divided into smaller, similar sub-
problems, and can be recursively divided in the same way.

2. Subproblems are independent: There is no overlap between subproblems, they are independent
of each other and can be solved independently.
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3. Solutions of subproblems can be merged: The solution to the original problem is obtained by
merging the solutions of subproblems.

Clearly, merge sort satisfies these three criteria.

1. The problem can be decomposed: Recursively divide the array (original problem) into two subar-
rays (subproblems).

2. Subproblems are independent: Each subarray can be sorted independently (subproblems can be
solved independently).

3. Solutions of subproblems can be merged: Two sorted subarrays (solutions of subproblems) can
be merged into one sorted array (solution of the original problem).

12.1.2 Improving Efficiency Through Divide and Conquer

Divide and conquer can not only effectively solve algorithmic problems but often also improve algo-
rithm efficiency. In sorting algorithms, quick sort, merge sort, and heap sort are faster than selection,
bubble, and insertion sort because they apply the divide and conquer strategy.

This raises the question: Why can divide and conquer improve algorithm efficiency, and what is the
underlying logic? In other words, why is dividing a large problem into multiple subproblems, solving
the subproblems, andmerging their solutionsmore efficient than directly solving the original problem?
This question can be discussed from two aspects: operation count and parallel computation.

1. Operation Count Optimization

Taking “bubble sort” as an example, processing an array of length 𝑛 requires 𝑂(𝑛2) time. Suppose we
divide the array into two subarrays from the midpoint as shown in Figure 12-2, the division requires
𝑂(𝑛) time, sorting each subarray requires 𝑂((𝑛/2)2) time, and merging the two subarrays requires
𝑂(𝑛) time, resulting in an overall time complexity of:

𝑂(𝑛 + (𝑛2 )2 × 2 + 𝑛) = 𝑂(𝑛
2

2 + 2𝑛)
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Figure 12-2 Bubble sort before and after array division

Next, we compute the following inequality, where the left and right sides represent the total number
of operations before and after division, respectively:

𝑛2 > 𝑛2

2 + 2𝑛

𝑛2 − 𝑛2

2 − 2𝑛 > 0
𝑛(𝑛 − 4) > 0

Thismeans thatwhen𝑛 > 4, the number of operations after division is smaller, and sorting efficiency
should be higher. Note that the time complexity after division is still quadratic𝑂(𝑛2), but the constant
term in the complexity has become smaller.

Going further, what if we continuously divide the subarrays from their midpoints into two subar-
rays until the subarrays have only one element? This approach is actually “merge sort”, with a time
complexity of𝑂(𝑛 log𝑛).
Thinking further,what if we set multiple division points and evenly divide the original array into 𝑘 sub-
arrays? This situation is very similar to “bucket sort”, which is well-suited for sorting massive amounts
of data, with a theoretical time complexity of𝑂(𝑛 + 𝑘).

2. Parallel Computation Optimization

We know that the subproblems generated by divide and conquer are independent of each other, so
they can typically be solved in parallel. This means divide and conquer can not only reduce the time
complexity of algorithms, but also benefits from parallel optimization by operating systems.
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Parallel optimization is particularly effective in multi-core or multi-processor environments, as the
system can simultaneously handle multiple subproblems, making fuller use of computing resources
and significantly reducing overall runtime.

For example, in the “bucket sort” shown in Figure 12-3, we evenly distribute massive data into various
buckets, and the sorting tasks for all buckets can be distributed to various computing units. After
completion, the results are merged.

Figure 12-3 Parallel computation in bucket sort

12.1.3 Common Applications of Divide and Conquer

On one hand, divide and conquer can be used to solve many classic algorithmic problems.

• Finding the closest pair of points: This algorithm first divides the point set into two parts, then
finds the closest pair of points in each part separately, and finally finds the closest pair of points
that spans both parts.

• Large integer multiplication: For example, the Karatsuba algorithm, which decomposes large
integer multiplication into several smaller integer multiplications and additions.

• Matrix multiplication: For example, the Strassen algorithm, which decomposes large matrix mul-
tiplication into multiple small matrix multiplications and additions.

• Hanota problem: The hanota problem can be solved through recursion, which is a typical appli-
cation of the divide and conquer strategy.

• Solving inversion pairs: In a sequence, if a preceding number is greater than a following number,
these two numbers form an inversion pair. Solving the inversion pair problem can utilize the
divide and conquer approach with the help of merge sort.

On the other hand, divide and conquer is widely applied in the design of algorithms and data struc-
tures.
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• Binary search: Binary search divides a sorted array into two parts from the midpoint index, then
decides which half to eliminate based on the comparison result between the target value and the
middle element value, and performs the same binary operation on the remaining interval.

• Merge sort: Already introduced at the beginning of this section, no further elaboration needed.
• Quick sort: Quick sort selects a pivot value, then divides the array into two subarrays, one with
elements smaller than the pivot and the other with elements larger than the pivot, then performs
the same division operation on these two parts until the subarrays have only one element.

• Bucket sort: The basic idea of bucket sort is to scatter data into multiple buckets, then sort the
elements within each bucket, and finally extract the elements from each bucket in sequence to
obtain a sorted array.

• Trees: For example, binary search trees, AVL trees, red-black trees, B-trees, B+ trees, etc. Their
search, insertion, and deletion operations can all be viewed as applications of the divide and con-
quer strategy.

• Heaps: A heap is a special complete binary tree, and its various operations, such as insertion,
deletion, and heapify, actually imply the divide and conquer idea.

• Hash tables: Although hash tables do not directly apply divide and conquer, some hash collision
resolution solutions indirectly apply the divide and conquer strategy. For example, long linked
lists in chaining may be converted to red-black trees to improve query efficiency.

It can be seen that divide and conquer is a “subtly pervasive” algorithmic idea, embedded in various
algorithms and data structures.

12.2 Divide and Conquer Search Strategy

We have already learned that search algorithms are divided into two major categories.

• Brute-force search: Implemented by traversing the data structure, with a time complexity of
𝑂(𝑛).

• Adaptive search: Utilizes unique data organization forms or prior information, with time com-
plexity reaching𝑂(log𝑛) or even𝑂(1).

In fact, search algorithms with time complexity of 𝑂(log𝑛) are typically implemented based on the
divide and conquer strategy, such as binary search and trees.

• Each step of binary search divides the problem (searching for a target element in an array) into a
smaller problem (searching for the target element in half of the array), continuing until the array
is empty or the target element is found.

• Trees are representative of the divide and conquer idea. In data structures such as binary search
trees, AVL trees, and heaps, the time complexity of various operations is𝑂(log𝑛).

The divide and conquer strategy of binary search is as follows.

• The problem can be decomposed: Binary search recursively decomposes the original problem
(searching in an array) into subproblems (searching in half of the array), achieved by comparing
the middle element with the target element.
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• Subproblems are independent: In binary search, each round only processes one subproblem,
which is not affected by other subproblems.

• Solutions of subproblems do not need to bemerged: Binary search aims to find a specific element,
so there is no need to merge the solutions of subproblems. When a subproblem is solved, the
original problem is also solved.

Divide and conquer can improve search efficiency because brute-force search can only eliminate one
option per round, while divide and conquer search can eliminate half of the options per round.

1. Implementing Binary Search Based on Divide and Conquer

In previous sections, binary search was implemented based on iteration. Now we implement it based
on divide and conquer (recursion).

Question
Given a sorted array nums of length 𝑛, where all elements are unique, find the element target.

From a divide and conquer perspective, we denote the subproblem corresponding to the search interval
[𝑖, 𝑗] as 𝑓(𝑖, 𝑗).
Starting from the original problem 𝑓(0, 𝑛 − 1), perform binary search through the following steps.

1. Calculate the midpoint 𝑚 of the search interval [𝑖, 𝑗], and use it to eliminate half of the search
interval.

2. Recursively solve the subproblem reduced by half in size, which could be 𝑓(𝑖, 𝑚−1) or 𝑓(𝑚+1, 𝑗).
3. Repeat steps 1. and 2. until target is found or the interval is empty and return.

Figure 12-4 shows the divide and conquer process of binary search for element 6 in an array.

Figure 12-4 Divide and conquer process of binary search

In the implementation code, we declare a recursive function dfs() to solve the problem 𝑓(𝑖, 𝑗):
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^/ ^^= File: binary_search_recur.cpp ^^=

^* Binary search: problem f(i, j) ^/
int dfs(vector<int> &nums, int target, int i, int j) {

^/ If the interval is empty, it means there is no target element, return -1
if (i > j) {

return -1;
}
^/ Calculate the midpoint index m
int m = (i + j) / 2;
if (nums[m] < target) {

^/ Recursion subproblem f(m+1, j)
return dfs(nums, target, m + 1, j);

} else if (nums[m] > target) {
^/ Recursion subproblem f(i, m-1)
return dfs(nums, target, i, m - 1);

} else {
^/ Found the target element, return its index
return m;

}
}

^* Binary search ^/
int binarySearch(vector<int> &nums, int target) {

int n = nums.size();
^/ Solve the problem f(0, n-1)
return dfs(nums, target, 0, n - 1);

}

12.3 Building a Binary Tree Problem

Question
Given the preorder traversal preorder and inorder traversal inorder of a binary tree, construct
the binary tree and return the root node of the binary tree. Assume there are no duplicate node
values in the binary tree (as shown in Figure 12-5).

Figure 12-5 Example data for building a binary tree
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1. Determining If It Is a Divide and Conquer Problem

The original problem is defined as constructing a binary tree from preorder and inorder, which is a
typical divide and conquer problem.

• The problem can be decomposed: From a divide and conquer perspective, we can divide the
original problem into two subproblems: constructing the left subtree and constructing the right
subtree, plus one operation: initializing the root node. For each subtree (subproblem), we can still
reuse the above divisionmethod, dividing it into smaller subtrees (subproblems) until the smallest
subproblem (empty subtree) is reached.

• Subproblems are independent: The left and right subtrees are independent of each other; there
is no overlap between them. When constructing the left subtree, we only need to focus on the
parts of the inorder and preorder traversals corresponding to the left subtree. The same applies
to the right subtree.

• Solutions of subproblems can be merged: Once we have the left and right subtrees (solutions of
subproblems), we can link them to the root node to obtain the solution to the original problem.

2. How to Divide Subtrees

Based on the above analysis, this problem can be solved using divide and conquer, but how dowe divide
the left and right subtrees through the preorder traversal preorder and inorder traversal inorder?

According to the definition, both preorder and inorder can be divided into three parts.

• Preorder traversal: [ Root Node | Left Subtree | Right Subtree ], for example, the tree in
Figure 12-5 corresponds to [ 3 | 9 | 2 1 7 ].

• Inorder traversal: [ Left Subtree | Root Node ｜ Right Subtree ], for example, the tree in
Figure 12-5 corresponds to [ 9 | 3 | 1 2 7 ].

Using the data from the figure above as an example, we can obtain the division results through the
steps shown in Figure 12-6.

1. The first element 3 in the preorder traversal is the value of the root node.
2. Find the index of root node 3 in inorder, and use this index to divide inorder into [ 9 | 3 ｜ 1 2 7 ].
3. Based on the division result of inorder, it is easy to determine that the left and right subtrees
have 1 and 3 nodes respectively, allowing us to divide preorder into [ 3 | 9 | 2 1 7 ].
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Figure 12-6 Dividing subtrees in preorder and inorder traversals

3. Describing Subtree Intervals Based on Variables

Based on the above divisionmethod,wehave obtained the index intervals of the root node, left subtree,
and right subtree in preorder and inorder. To describe these index intervals, we need to use several
pointer variables.

• Denote the index of the current tree’s root node in preorder as 𝑖.
• Denote the index of the current tree’s root node in inorder as𝑚.
• Denote the index interval of the current tree in inorder as [𝑙, 𝑟].

As shown in Table 12-1, through these variables we can represent the index of the root node in preorder
and the index intervals of the subtrees in inorder.

Table 12-1 Indices of root node and subtrees in preorder and inorder traversals

Root node index in preorder Subtree index interval in inorder

Current tree 𝑖 [𝑙, 𝑟]
Left subtree 𝑖 + 1 [𝑙, 𝑚 − 1]
Right subtree 𝑖 + 1 + (𝑚 − 𝑙) [𝑚 + 1, 𝑟]

Please note that (𝑚 − 𝑙) in the right subtree root node index means “the number of nodes in the left
subtree”. It is recommended to understand this in conjunction with Figure 12-7.
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Figure 12-7 Index interval representation of root node and left and right subtrees

4. Code Implementation

To improve the efficiency of querying𝑚, we use a hash table hmap to store the mapping from elements
in the inorder array to their indices:

^/ ^^= File: build_tree.cpp ^^=

^* Build binary tree: divide and conquer ^/
TreeNode *dfs(vector<int> &preorder, unordered_map<int, int> &inorderMap, int i, int l, int r) {

^/ Terminate when the subtree interval is empty
if (r - l < 0)

return NULL;
^/ Initialize the root node
TreeNode *root = new TreeNode(preorder[i]);
^/ Query m to divide the left and right subtrees
int m = inorderMap[preorder[i]];
^/ Subproblem: build the left subtree
root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);
^/ Subproblem: build the right subtree
root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
^/ Return the root node
return root;

}

^* Build binary tree ^/
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {

^/ Initialize hash map, storing the mapping from inorder elements to indices
unordered_map<int, int> inorderMap;
for (int i = 0; i < inorder.size(); i^+) {

inorderMap[inorder[i]] = i;
}
TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);
return root;

}

Figure 12-8 shows the recursive process of building the binary tree. Each node is established during the
downward “recursion” process, while each edge (reference) is established during the upward “return”
process.
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Figure 12-8 Recursive process of building a binary tree
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The division results of the preorder traversal preorder and inorder traversal inorder within each re-
cursive function are shown in Figure 12-9.

Figure 12-9 Division results in each recursive function

Let the number of nodes in the tree be 𝑛. Initializing each node (executing one recursive function
dfs()) takes𝑂(1) time. Therefore, the overall time complexity is𝑂(𝑛).
The hash table stores the mapping from inorder elements to their indices, with a space complexity
of 𝑂(𝑛). In the worst case, when the binary tree degenerates into a linked list, the recursion depth
reaches 𝑛, using𝑂(𝑛) stack frame space. Therefore, the overall space complexity is𝑂(𝑛).

12.4 Hanota Problem

In merge sort and building binary trees, we decompose the original problem into two subproblems,
each half the size of the original problem. However, for the hanota problem, we adopt a different
decomposition strategy.

Question
Given three pillars, denoted as A, B, and C. Initially, pillar A has 𝑛 discs stacked on it, arranged
from top to bottom in ascending order of size. Our task is to move these 𝑛 discs to pillar C while
maintaining their original order (as shown in Figure 12-10). The following rules must be followed
when moving the discs.

1. A disc can only be taken from the top of one pillar and placed on top of another pillar.
2. Only one disc can be moved at a time.
3. A smaller disc must always be on top of a larger disc.
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Figure 12-10 Example of the hanota problem

We denote the hanota problem of size 𝑖 as 𝑓(𝑖). For example, 𝑓(3) represents moving 3 discs from A
to C.

1. Considering the Base Cases

As shown in Figure 12-11, for problem 𝑓(1), when there is only one disc, we can move it directly from A
to C.

Figure 12-11 Solution for a problem of size 1

As shown in Figure 12-12, for problem 𝑓(2), when there are two discs, since we must always keep the
smaller disc on top of the larger disc, we need to use B to assist in the move.

1. First, move the smaller disc from A to B.
2. Then move the larger disc from A to C.
3. Finally, move the smaller disc from B to C.
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Figure 12-12 Solution for a problem of size 2

The process of solving problem 𝑓(2) can be summarized as: moving two discs from A to C with the
help of B. Here, C is called the target pillar, and B is called the buffer pillar.

2. Subproblem Decomposition

For problem 𝑓(3), when there are three discs, the situation becomes slightly more complex.
Since we already know the solutions to 𝑓(1) and 𝑓(2), we can think from a divide and conquer per-
spective, treating the top two discs on A as a whole, and execute the steps shown in Figure 12-13. This
successfully moves the three discs from A to C.

1. Let B be the target pillar and C be the buffer pillar, and move two discs from A to B.
2. Move the remaining disc from A directly to C.
3. Let C be the target pillar and A be the buffer pillar, and move two discs from B to C.
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Figure 12-13 Solution for a problem of size 3

Essentially, we divide problem 𝑓(3) into two subproblems 𝑓(2) and one subproblem 𝑓(1). By solving
these three subproblems in order, the original problem is solved. This shows that the subproblems are
independent and their solutions can be merged.

From this, we can summarize the divide and conquer strategy for solving the hanota problem shown
in Figure 12-14: divide the original problem 𝑓(𝑛) into two subproblems 𝑓(𝑛 − 1) and one subproblem
𝑓(1), and solve these three subproblems in the following order.
1. Move 𝑛 − 1 discs from A to B with the help of C.
2. Move the remaining 1 disc directly from A to C.
3. Move 𝑛 − 1 discs from B to C with the help of A.

For these two subproblems 𝑓(𝑛 − 1), we can recursively divide them in the same way until reaching
the smallest subproblem 𝑓(1). The solution to 𝑓(1) is known and requires only one move operation.

Figure 12-14 Divide and conquer strategy for solving the hanota problem
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3. Code Implementation

In the code, we declare a recursive function dfs(i, src, buf, tar), whose purpose is to move the
top 𝑖 discs from pillar src to target pillar tar with the help of buffer pillar buf:

^/ ^^= File: hanota.cpp ^^=

^* Move a disk ^/
void move(vector<int> &src, vector<int> &tar) {

^/ Take out a disk from the top of src
int pan = src.back();
src.pop_back();
^/ Place the disk on top of tar
tar.push_back(pan);

}

^* Solve the Tower of Hanoi problem f(i) ^/
void dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {

^/ If there is only one disk left in src, move it directly to tar
if (i ^= 1) {

move(src, tar);
return;

}
^/ Subproblem f(i-1): move the top i-1 disks from src to buf using tar
dfs(i - 1, src, tar, buf);
^/ Subproblem f(1): move the remaining disk from src to tar
move(src, tar);
^/ Subproblem f(i-1): move the top i-1 disks from buf to tar using src
dfs(i - 1, buf, src, tar);

}

^* Solve the Tower of Hanoi problem ^/
void solveHanota(vector<int> &A, vector<int> &B, vector<int> &C) {

int n = A.size();
^/ Move the top n disks from A to C using B
dfs(n, A, B, C);

}

As shown in Figure 12-15, the hanota problem forms a recursion tree of height 𝑛, where each node
represents a subproblem corresponding to an invocation of the dfs() function, therefore the time
complexity is𝑂(2𝑛) and the space complexity is𝑂(𝑛).
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Figure 12-15 Recursion tree of the hanota problem

Quote
The hanota problem originates from an ancient legend. In a temple in ancient India, monks had
three tall diamond pillars and 64 golden discs of different sizes. The monks continuously moved
the discs, believing that when the last disc was correctly placed, the world would come to an
end.
However, even if the monks moved one disc per second, it would take approximately 264 ≈
1.84 × 1019 seconds, which is about 5850 billion years, far exceeding current estimates of the
age of the universe. Therefore, if this legend is true, we should not need to worry about the end
of the world.

12.5 Summary

1. Key Review

• Divide and conquer is a common algorithm design strategy, consisting of two phases: divide (par-
tition) and conquer (merge), typically implemented based on recursion.

• The criteria for determining whether a problem is a divide and conquer problem include: whether
the problem can be decomposed, whether subproblems are independent, and whether subprob-
lems can be merged.

• Merge sort is a typical application of the divide and conquer strategy. It recursively divides an
array into two equal-length subarrays until only one element remains, then merges them layer by
layer to complete the sorting.

• Introducing the divide and conquer strategy can often improve algorithm efficiency. On one hand,
the divide and conquer strategy reduces the number of operations; on the other hand, it facilitates
parallel optimization of the system after division.
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• Divide and conquer can both solve many algorithmic problems and is widely applied in data struc-
ture and algorithm design, appearing everywhere.

• Compared to brute-force search, adaptive search is more efficient. Search algorithms with time
complexity of𝑂(log𝑛) are typically implemented based on the divide and conquer strategy.

• Binary search is another typical application of divide and conquer. It does not include the step
of merging solutions of subproblems. We can implement binary search through recursive divide
and conquer.

• In the problem of building a binary tree, building the tree (original problem) can be divided into
building the left subtree and right subtree (subproblems), which can be achieved by dividing the
index intervals of the preorder and inorder traversals.

• In the hanota problem, a problem of size 𝑛 can be divided into two subproblems of size 𝑛−1 and
one subproblem of size 1. After solving these three subproblems in order, the original problem is
solved.
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Chapter 13. Backtracking

Abstract
We are like explorers in a maze, and may encounter difficulties on the path forward.
The power of backtracking allows us to start over, keep trying, and eventually find the exit leading
to light.
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13.1 Backtracking Algorithm

The backtracking algorithm is a method for solving problems through exhaustive search. Its core idea
is to start from an initial state and exhaustively search all possible solutions. When a correct solution is
found, it is recorded. This process continues until a solution is found or all possible choices have been
tried without finding a solution.

The backtracking algorithm typically employs “depth-first search” to traverse the solution space. In
the “Binary Tree” chapter, we mentioned that preorder, inorder, and postorder traversals all belong to
depth-first search. Next, we will construct a backtracking problem using preorder traversal to progres-
sively understand how the backtracking algorithm works.

Example 1
Given a binary tree, search and record all nodes with value 7, and return a list of these nodes.

For this problem, we perform a preorder traversal of the tree and check whether the current node’s
value is 7. If it is, we add the node to the result list res. The relevant implementation is shown in the
following figure and code:

^/ ^^= File: preorder_traversal_i_compact.cpp ^^=

^* Preorder traversal: Example 1 ^/
void preOrder(TreeNode *root) {

if (root ^= nullptr) {
return;

}
if (root->val ^= 7) {

^/ Record solution
res.push_back(root);

}
preOrder(root->left);
preOrder(root->right);

}

Figure 13-1 Search for nodes in preorder traversal
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13.1.1 Attempt and Backtrack

The reason it is called a backtracking algorithm is that it employs “attempt” and “backtrack” strategies
when searching the solution space. When the algorithm encounters a state where it cannot continue
forward or cannot find a solution that satisfies the constraints, it will undo the previous choice, return
to a previous state, and try other possible choices.

For Example 1, visiting each node represents an “attempt”, while skipping over a leaf node or a function
return from the parent node represents a “backtrack”.

It is worth noting that backtracking is not limited to function returns alone. To illustrate this, let’s
extend Example 1 slightly.

Example 2
In a binary tree, search all nodes with value 7, and return the paths from the root node to these
nodes.

Based on the code from Example 1, we need to use a list path to record the visited node path. When
we reach a node with value 7, we copy path and add it to the result list res. After traversal is complete,
res contains all the solutions. The code is as follows:

^/ ^^= File: preorder_traversal_ii_compact.cpp ^^=

^* Preorder traversal: Example 2 ^/
void preOrder(TreeNode *root) {

if (root ^= nullptr) {
return;

}
^/ Attempt
path.push_back(root);
if (root->val ^= 7) {

^/ Record solution
res.push_back(path);

}
preOrder(root->left);
preOrder(root->right);
^/ Backtrack
path.pop_back();

}

In each “attempt”, we record the path by adding the current node to path; before “backtracking”, we
need to remove the node from path, to restore the state before this attempt.

Observing the process shown in the following figure, we can understand attempt and backtrack as
“advance” and “undo”, two operations that are the reverse of each other.
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Figure 13-2 Attempt and backtrack

13.1.2 Pruning

Complex backtracking problems usually contain one or more constraints. Constraints can typically be
used for “pruning”.

Example 3
In a binary tree, search all nodes with value 7 and return the paths from the root node to these
nodes, but require that the paths do not contain nodes with value 3.

To satisfy the above constraints, we need to add pruning operations: during the search process, if we
encounter a node with value 3, we return early and do not continue searching. The code is as follows:

^/ ^^= File: preorder_traversal_iii_compact.cpp ^^=

^* Preorder traversal: Example 3 ^/
void preOrder(TreeNode *root) {

^/ Pruning
if (root ^= nullptr ^| root->val ^= 3) {

return;
}
^/ Attempt
path.push_back(root);
if (root->val ^= 7) {

^/ Record solution
res.push_back(path);

}
preOrder(root->left);
preOrder(root->right);
^/ Backtrack
path.pop_back();

}

“Pruning” is a vivid term. As shown in the following figure, during the search process,we “prune” search
branches that do not satisfy the constraints, avoiding many meaningless attempts and thus improving
search efficiency.
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Figure 13-3 Pruning according to constraints

13.1.3 Framework Code

Next, we attempt to extract the main framework of backtracking’s “attempt, backtrack, and pruning”,
to improve code generality.

In the following framework code, state represents the current state of the problem, and choices rep-
resents the choices available in the current state:

^* Backtracking algorithm framework ^/
void backtrack(State *state, vector<Choice ^> &choices, vector<State ^> &res) {

^/ Check if it is a solution
if (isSolution(state)) {

^/ Record the solution
recordSolution(state, res);
^/ Stop searching
return;

}
^/ Traverse all choices
for (Choice choice : choices) {

^/ Pruning: check if the choice is valid
if (isValid(state, choice)) {

^/ Attempt: make a choice and update the state
makeChoice(state, choice);
backtrack(state, choices, res);
^/ Backtrack: undo the choice and restore to the previous state
undoChoice(state, choice);

}
}

}

Next, we solve Example 3 based on the framework code. The state state is the node traversal path, the
choices choices are the left and right child nodes of the current node, and the result res is a list of
paths:

^/ ^^= File: preorder_traversal_iii_template.cpp ^^=

^* Check if the current state is a solution ^/
bool isSolution(vector<TreeNode ^> &state) {
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return !state.empty() ^& state.back()->val ^= 7;
}

^* Record solution ^/
void recordSolution(vector<TreeNode ^> &state, vector<vector<TreeNode ^>> &res) {

res.push_back(state);
}

^* Check if the choice is valid under the current state ^/
bool isValid(vector<TreeNode ^> &state, TreeNode *choice) {

return choice ^= nullptr ^& choice->val ^= 3;
}

^* Update state ^/
void makeChoice(vector<TreeNode ^> &state, TreeNode *choice) {

state.push_back(choice);
}

^* Restore state ^/
void undoChoice(vector<TreeNode ^> &state, TreeNode *choice) {

state.pop_back();
}

^* Backtracking algorithm: Example 3 ^/
void backtrack(vector<TreeNode ^> &state, vector<TreeNode ^> &choices, vector<vector<TreeNode

^>> &res) {↪
^/ Check if it is a solution
if (isSolution(state)) {

^/ Record solution
recordSolution(state, res);

}
^/ Traverse all choices
for (TreeNode *choice : choices) {

^/ Pruning: check if the choice is valid
if (isValid(state, choice)) {

^/ Attempt: make choice, update state
makeChoice(state, choice);
^/ Proceed to the next round of selection
vector<TreeNode ^> nextChoices{choice->left, choice->right};
backtrack(state, nextChoices, res);
^/ Backtrack: undo choice, restore to previous state
undoChoice(state, choice);

}
}

}

As per the problem statement, we should continue searching after finding a node with value 7. There-
fore, we need to remove the return statement after recording the solution. The following figure
compares the search process with and without the return statement.
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Figure 13-4 Comparison of search process with and without return statement

Compared to code based on preorder traversal, code based on the backtracking algorithm framework
appears more verbose, but has better generality. In fact, many backtracking problems can be solved
within this framework. We only need to define state and choices for the specific problem and imple-
ment each method in the framework.

13.1.4 Common Terminology

To analyze algorithmic problems more clearly, we summarize the meanings of common terminology
used in backtracking algorithms and provide corresponding examples from Example 3, as shown in the
following table.

Table 13-1 Common Backtracking Algorithm Terminology

Term Definition Example 3

Solution
(solution)

A solution is an answer that satisfies the specific
conditions of a problem; there may be one or more
solutions

All paths from root to nodes with
value 7 that satisfy the constraint

Constraint
(constraint)

A constraint is a condition in the problem that limits the
feasibility of solutions, typically used for pruning

Paths do not contain nodes with value
3

State
(state)

State represents the situation of a problem at a certain
moment, including the choices already made

The currently visited node path, i.e.,
the path list of nodes

Attempt
(attempt)

An attempt is the process of exploring the solution space
according to available choices, including making choices,
updating state, and checking if it is a solution

Recursively visit left (right) child
nodes, add nodes to path, check if
node value is 7



Chapter 13. Backtracking www.hello-algo.com 298

Term Definition Example 3

Backtrack
(backtrack-
ing)

Backtracking refers to undoing previous choices and
returning to a previous state when encountering a state
that does not satisfy constraints

Stop searching when passing over leaf
nodes, ending node visits, or
encountering nodes with value 3;
function returns

Pruning
(pruning)

Pruning is a method of avoiding meaningless search
paths according to problem characteristics and
constraints, which can improve search efficiency

When encountering a node with value
3, do not continue searching

Tip
The concepts of problem, solution, state, etc. are universal and are involved in divide-and-
conquer, backtracking, dynamic programming, greedy and other algorithms.

13.1.5 Advantages and Limitations

The backtracking algorithm is essentially a depth-first search algorithm that tries all possible solutions
until it finds one that satisfies the conditions. The advantage of this approach is that it can find all
possible solutions, and with reasonable pruning operations, it achieves high efficiency.

However, when dealingwith large-scale or complex problems, the running efficiency of the backtrack-
ing algorithm may be unacceptable.

• Time: The backtracking algorithm usually needs to traverse all possibilities in the solution space,
and the time complexity can reach exponential or factorial order.

• Space: During recursive calls, the current state needs to be saved (such as paths, auxiliary vari-
ables used for pruning, etc.), and when the depth is large, the space requirement can become very
large.

Nevertheless, the backtracking algorithm is still the best solution for certain search problems and
constraint satisfaction problems. For these problems, since we cannot predict which choices will
generate valid solutions, we must traverse all possible choices. In this case, the key is how to optimize
efficiency. There are two common efficiency optimization methods.

• Pruning: Avoid searching paths that are guaranteed not to produce solutions, thereby saving time
and space.

• Heuristic search: Introduce certain strategies or estimation values during the search process to
prioritize searching paths that are most likely to produce valid solutions.

13.1.6 Typical Backtracking Examples

The backtracking algorithm can be used to solve many search problems, constraint satisfaction prob-
lems, and combinatorial optimization problems.

Search problems: The goal of these problems is to find solutions that satisfy specific conditions.



Chapter 13. Backtracking www.hello-algo.com 299

• Permutation problem: Given a set, find all possible permutations and combinations.
• Subset sum problem: Given a set and a target sum, find all subsets in the set whose elements sum
to the target.

• Tower of Hanoi: Given three pegs and a series of disks of different sizes, move all disks from one
peg to another, moving only one disk at a time, and never placing a larger disk on a smaller disk.

Constraint satisfaction problems: The goal of these problems is to find solutions that satisfy all con-
straints.

• N-Queens: Place 𝑛 queens on an 𝑛 × 𝑛 chessboard such that they do not attack each other.
• Sudoku: Fill numbers 1 to 9 in a 9×9 grid such that each row, column, and 3×3 subgrid contains
no repeated digits.

• Graph coloring: Given an undirected graph, color each vertexwith theminimumnumber of colors
such that adjacent vertices have different colors.

Combinatorial optimization problems: The goal of these problems is to find an optimal solution that
satisfies certain conditions in a combinatorial space.

• 0-1 Knapsack: Given a set of items and a knapsack, each item has a value and weight. Under the
knapsack capacity constraint, select items to maximize total value.

• Traveling Salesman Problem: Starting from a point in a graph, visit all other points exactly once
and return to the starting point, finding the shortest path.

• Maximum Clique: Given an undirected graph, find the largest complete subgraph, i.e., a subgraph
where any two vertices are connected by an edge.

Note that for many combinatorial optimization problems, backtracking is not the optimal solution.

• The 0-1 Knapsack problem is usually solved using dynamic programming to achieve higher time
efficiency.

• The Traveling Salesman Problem is a famousNP-Hard problem; common solutions include genetic
algorithms and ant colony algorithms.

• The Maximum Clique problem is a classical problem in graph theory and can be solved using
heuristic algorithms such as greedy algorithms.

13.2 Permutations Problem

The permutations problem is a classic application of backtracking algorithms. It is defined as finding
all possible arrangements of elements in a given collection (such as an array or string).

Table 13-2 shows several example datasets, including input arrays and their corresponding permuta-
tions.

Table 13-2 Permutations Examples
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Input Array All Permutations

[1] [1]
[1, 2] [1, 2], [2, 1]
[1, 2, 3] [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

13.2.1 Case with Distinct Elements

Question
Given an integer array with no duplicate elements, return all possible permutations.

From the perspective of backtracking algorithms, we can imagine the process of generating permu-
tations as the result of a series of choices. Suppose the input array is [1, 2, 3]. If we first choose 1,
then choose 3, and finally choose 2, we obtain the permutation [1, 3, 2]. Backtracking means undoing
a choice and then trying other choices.

From the perspective of backtracking code, the candidate set choices consists of all elements in the
input array, and the state state is the elements that have been chosen so far. Note that each element
can only be chosen once, therefore all elements in state should be unique.

As shown in Figure 13-5, we can unfold the search process into a recursion tree, where each node in
the tree represents the current state state. Starting from the root node, after three rounds of choices,
we reach a leaf node, and each leaf node corresponds to a permutation.

Figure 13-5 Recursion tree of permutations

1. Pruning Duplicate Choices

To ensure that each element is chosen only once, we consider introducing a boolean array selected,
where selected[i] indicates whether choices[i] has been chosen. We implement the following prun-
ing operation based on it.
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• After making a choice choice[i], we set selected[i] to True, indicating that it has been chosen.
• When traversing the candidate list choices, we skip all nodes that have been chosen, which is
pruning.

As shown in Figure 13-6, supposewe choose 1 in the first round, 3 in the second round, and 2 in the third
round. Then we need to prune the branch of element 1 in the second round and prune the branches
of elements 1 and 3 in the third round.

Figure 13-6 Pruning example of permutations

Observing the above figure, we find that this pruning operation reduces the search space size from
𝑂(𝑛𝑛) to𝑂(𝑛!).

2. Code Implementation

After understanding the above information, we can fill in the blanks in the template code. To shorten
the overall code, we do not implement each function in the template separately, but instead unfold
them in the backtrack() function:

^/ ^^= File: permutations_i.cpp ^^=

^* Backtracking algorithm: Permutations I ^/
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected,

vector<vector<int>> &res) {↪
^/ When the state length equals the number of elements, record the solution
if (state.size() ^= choices.size()) {

res.push_back(state);
return;

}
^/ Traverse all choices
for (int i = 0; i < choices.size(); i^+) {

int choice = choices[i];
^/ Pruning: do not allow repeated selection of elements
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if (!selected[i]) {
^/ Attempt: make choice, update state
selected[i] = true;
state.push_back(choice);
^/ Proceed to the next round of selection
backtrack(state, choices, selected, res);
^/ Backtrack: undo choice, restore to previous state
selected[i] = false;
state.pop_back();

}
}

}

^* Permutations I ^/
vector<vector<int>> permutationsI(vector<int> nums) {

vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;

}

13.2.2 Case with Duplicate Elements

Question
Given an integer array thatmay contain duplicate elements, return all unique permutations.

Suppose the input array is [1, 1, 2]. To distinguish the two duplicate elements 1, we denote the second
1 as ̂1.
As shown in Figure 13-7, the method described above generates permutations where half are dupli-
cates.

Figure 13-7 Duplicate permutations
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So how dowe remove duplicate permutations? Themost direct approach is to use a hash set to directly
deduplicate the permutation results. However, this is not elegant because the search branches that
generate duplicate permutations are unnecessary and should be identified and pruned early, which
can further improve algorithm efficiency.

1. Pruning Duplicate Elements

Observe Figure 13-8. In the first round, choosing 1 or choosing ̂1 is equivalent. All permutations gen-
erated under these two choices are duplicates. Therefore, we should prune ̂1.
Similarly, after choosing 2 in the first round, the 1 and ̂1 in the second round also produce duplicate
branches, so the second round’s ̂1 should also be pruned.
Essentially, our goal is to ensure that multiple equal elements are chosen only once in a certain round
of choices.

Figure 13-8 Pruning duplicate permutations

2. Code Implementation

Building on the code from the previous problem, we consider opening a hash set duplicated in each
round of choices to record which elements have been tried in this round, and prune duplicate ele-
ments:

^/ ^^= File: permutations_ii.cpp ^^=

^* Backtracking algorithm: Permutations II ^/
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected,

vector<vector<int>> &res) {↪
^/ When the state length equals the number of elements, record the solution
if (state.size() ^= choices.size()) {

res.push_back(state);
return;

}
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^/ Traverse all choices
unordered_set<int> duplicated;
for (int i = 0; i < choices.size(); i^+) {

int choice = choices[i];
^/ Pruning: do not allow repeated selection of elements and do not allow repeated

selection of equal elements↪
if (!selected[i] ^& duplicated.find(choice) ^= duplicated.end()) {

^/ Attempt: make choice, update state
duplicated.emplace(choice); ^/ Record the selected element value
selected[i] = true;
state.push_back(choice);
^/ Proceed to the next round of selection
backtrack(state, choices, selected, res);
^/ Backtrack: undo choice, restore to previous state
selected[i] = false;
state.pop_back();

}
}

}

^* Permutations II ^/
vector<vector<int>> permutationsII(vector<int> nums) {

vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;

}

Assuming elements are pairwise distinct, there are 𝑛! (factorial) permutations of 𝑛 elements. When
recording results, we need to copy a list of length 𝑛, using𝑂(𝑛) time. Therefore, the time complexity
is𝑂(𝑛! ⋅ 𝑛).
The maximum recursion depth is 𝑛, using 𝑂(𝑛) stack frame space. selected uses 𝑂(𝑛) space. At
most 𝑛 duplicated sets exist simultaneously, using 𝑂(𝑛2) space. Therefore, the space complexity is
𝑂(𝑛2).

3. Comparison of Two Pruning Methods

Note that although both selected and duplicated are used for pruning, they have different objec-
tives.

• Pruning duplicate choices: There is only one selected throughout the entire search process. It
records which elements are included in the current state, and its purpose is to prevent an element
from appearing repeatedly in state.

• Pruning duplicate elements: Each round of choices (each backtrack function call) contains a
duplicated set. It records which elements have been chosen in this round’s iteration (the for
loop), and its purpose is to ensure that equal elements are chosen only once.

Figure 13-9 shows the effective scope of the two pruning conditions. Note that each node in the tree
represents a choice, and the nodes on the path from the root to a leaf node form a permutation.
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Figure 13-9 Effective scope of two pruning conditions

13.3 Subset-Sum Problem

13.3.1 Without Duplicate Elements

Question
Given a positive integer array nums and a target positive integer target, find all possible combi-
nations where the sum of elements in the combination equals target. The given array has no
duplicate elements, and each element can be selectedmultiple times. Return these combinations
in list form, where the list should not contain duplicate combinations.

For example, given the set {3, 4, 5} and target integer 9, the solutions are {3, 3, 3}, {4, 5}. Note the
following two points:

• Elements in the input set can be selected repeatedly without limit.
• Subsets do not distinguish element order; for example, {4, 5} and {5, 4} are the same subset.

1. Reference to Full Permutation Solution

Similar to the full permutation problem, we can imagine the process of generating subsets as a series
of choices, and update the “sum of elements” in real-time during the selection process. When the sum
equals target, we record the subset to the result list.

Unlike the full permutation problem, elements in this problem’s set can be selected unlimited times,
so we do not need to use a selected boolean list to track whether an element has been selected. We
can make minor modifications to the full permutation code and initially obtain the solution:
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^/ ^^= File: subset_sum_i_naive.cpp ^^=

^* Backtracking algorithm: Subset sum I ^/
void backtrack(vector<int> &state, int target, int total, vector<int> &choices,

vector<vector<int>> &res) {↪
^/ When the subset sum equals target, record the solution
if (total ^= target) {

res.push_back(state);
return;

}
^/ Traverse all choices
for (size_t i = 0; i < choices.size(); i^+) {

^/ Pruning: if the subset sum exceeds target, skip this choice
if (total + choices[i] > target) {

continue;
}
^/ Attempt: make choice, update element sum total
state.push_back(choices[i]);
^/ Proceed to the next round of selection
backtrack(state, target, total + choices[i], choices, res);
^/ Backtrack: undo choice, restore to previous state
state.pop_back();

}
}

^* Solve subset sum I (including duplicate subsets) ^/
vector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {

vector<int> state; ^/ State (subset)
int total = 0; ^/ Subset sum
vector<vector<int>> res; ^/ Result list (subset list)
backtrack(state, target, total, nums, res);
return res;

}

When we input array [3, 4, 5] and target element 9 to the above code, the output is [3, 3, 3], [4, 5], [5, 4].
Although we successfully find all subsets that sum to 9, there are duplicate subsets [4, 5] and [5, 4].
This is because the search process distinguishes the order of selections, but subsets do not distinguish
selection order. As shown in Figure 13-10, selecting 4 first and then 5 versus selecting 5 first and then
4 are different branches, but they correspond to the same subset.
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Figure 13-10 Subset search and boundary pruning

To eliminate duplicate subsets, one straightforward idea is to deduplicate the result list. However, this
approach is very inefficient for two reasons:

• When there are many array elements, especially when target is large, the search process gener-
ates many duplicate subsets.

• Comparing subsets (arrays) is very time-consuming, requiring sorting the arrays first, then com-
paring each element in them.

2. Pruning Duplicate Subsets

We consider deduplication through pruning during the search process. Observing Figure 13-11, dupli-
cate subsets occur when array elements are selected in different orders, as in the following cases:

1. When the first and second rounds select 3 and 4 respectively, all subsets containing these two
elements are generated, denoted as [3, 4, … ].

2. Afterward, when the first round selects 4, the second round should skip 3, because the subset
[4, 3, … ] generated by this choice is completely duplicate with the subset generated in step 1.

In the search process, each level’s choices are tried from left to right, so the rightmost branches are
pruned more.

1. The first two rounds select 3 and 5, generating subset [3, 5, … ].
2. The first two rounds select 4 and 5, generating subset [4, 5, … ].
3. If the first round selects 5, the second round should skip 3 and 4, because subsets [5, 3, … ] and

[5, 4, … ] are completely duplicate with the subsets described in steps 1. and 2.
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Figure 13-11 Different selection orders leading to duplicate subsets

In summary, given an input array [𝑥1, 𝑥2,… , 𝑥𝑛], let the selection sequence in the search process be
[𝑥𝑖1

, 𝑥𝑖2
,… , 𝑥𝑖𝑚

]. This selection sequence must satisfy 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑚; any selection sequence
that does not satisfy this condition will cause duplicates and should be pruned.

3. Code Implementation

To implement this pruning, we initialize a variable start to indicate the starting point of traversal. After
making choice 𝑥𝑖, set the next round to start traversal from index 𝑖. This ensures that the selection
sequence satisfies 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑚, guaranteeing subset uniqueness.
In addition, we have made the following two optimizations to the code:

• Before starting the search, first sort the array nums. When traversing all choices, end the loop
immediately when the subset sum exceeds target, because subsequent elements are larger, and
their subset sums must exceed target.

• Omit the element sum variable total and use subtraction on target to track the sumof elements.
Record the solution when target equals 0.

^/ ^^= File: subset_sum_i.cpp ^^=

^* Backtracking algorithm: Subset sum I ^/
void backtrack(vector<int> &state, int target, vector<int> &choices, int start,

vector<vector<int>> &res) {↪
^/ When the subset sum equals target, record the solution
if (target ^= 0) {

res.push_back(state);
return;

}
^/ Traverse all choices
^/ Pruning 2: start traversing from start to avoid generating duplicate subsets
for (int i = start; i < choices.size(); i^+) {

^/ Pruning 1: if the subset sum exceeds target, end the loop directly
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^/ This is because the array is sorted, and later elements are larger, so the subset sum
will definitely exceed target↪

if (target - choices[i] < 0) {
break;

}
^/ Attempt: make choice, update target, start
state.push_back(choices[i]);
^/ Proceed to the next round of selection
backtrack(state, target - choices[i], choices, i, res);
^/ Backtrack: undo choice, restore to previous state
state.pop_back();

}
}

^* Solve subset sum I ^/
vector<vector<int>> subsetSumI(vector<int> &nums, int target) {

vector<int> state; ^/ State (subset)
sort(nums.begin(), nums.end()); ^/ Sort nums
int start = 0; ^/ Start point for traversal
vector<vector<int>> res; ^/ Result list (subset list)
backtrack(state, target, nums, start, res);
return res;

}

Figure 13-12 shows the complete backtracking process when array [3, 4, 5] and target element 9 are
input to the above code.

Figure 13-12 Subset-sum I backtracking process
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13.3.2 With Duplicate Elements in Array

Question
Given a positive integer array nums and a target positive integer target, find all possible combina-
tions where the sum of elements in the combination equals target. The given arraymay contain
duplicate elements, and each element can be selected at most once. Return these combinations
in list form, where the list should not contain duplicate combinations.

Compared to the previous problem, the input array in this problem may contain duplicate elements,
which introduces new challenges. For example, given array [4, ̂4, 5] and target element 9, the output
of the existing code is [4, 5], [ ̂4, 5], which contains duplicate subsets.
The reason for this duplication is that equal elements are selected multiple times in a certain round.
In Figure 13-13, the first round has three choices, two of which are 4, creating two duplicate search
branches that output duplicate subsets. Similarly, the two 4’s in the second round also produce dupli-
cate subsets.

Figure 13-13 Duplicate subsets caused by equal elements

1. Pruning Equal Elements

To solve this problem, we need to limit equal elements to be selected only once in each round. The
implementation is quite clever: since the array is already sorted, equal elements are adjacent. This
means that in a certain round of selection, if the current element equals the element to its left, it
means this element has already been selected, so we skip the current element directly.

At the same time, this problem specifies that each array element can only be selected once. Fortu-
nately, we can also use the variable start to satisfy this constraint: after making choice 𝑥𝑖, set the next
round to start traversal from index 𝑖 + 1 onwards. This both eliminates duplicate subsets and avoids
selecting elements multiple times.
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2. Code Implementation

^/ ^^= File: subset_sum_ii.cpp ^^=

^* Backtracking algorithm: Subset sum II ^/
void backtrack(vector<int> &state, int target, vector<int> &choices, int start,

vector<vector<int>> &res) {↪
^/ When the subset sum equals target, record the solution
if (target ^= 0) {

res.push_back(state);
return;

}
^/ Traverse all choices
^/ Pruning 2: start traversing from start to avoid generating duplicate subsets
^/ Pruning 3: start traversing from start to avoid repeatedly selecting the same element
for (int i = start; i < choices.size(); i^+) {

^/ Pruning 1: if the subset sum exceeds target, end the loop directly
^/ This is because the array is sorted, and later elements are larger, so the subset sum

will definitely exceed target↪
if (target - choices[i] < 0) {

break;
}
^/ Pruning 4: if this element equals the left element, it means this search branch is

duplicate, skip it directly↪
if (i > start ^& choices[i] ^= choices[i - 1]) {

continue;
}
^/ Attempt: make choice, update target, start
state.push_back(choices[i]);
^/ Proceed to the next round of selection
backtrack(state, target - choices[i], choices, i + 1, res);
^/ Backtrack: undo choice, restore to previous state
state.pop_back();

}
}

^* Solve subset sum II ^/
vector<vector<int>> subsetSumII(vector<int> &nums, int target) {

vector<int> state; ^/ State (subset)
sort(nums.begin(), nums.end()); ^/ Sort nums
int start = 0; ^/ Start point for traversal
vector<vector<int>> res; ^/ Result list (subset list)
backtrack(state, target, nums, start, res);
return res;

}

Figure 13-14 shows the backtracking process for array [4, 4, 5] and target element 9, which includes
four types of pruning operations. Combine the illustration with the code comments to understand the
entire search process and how each pruning operation works.
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Figure 13-14 Subset-sum II backtracking process

13.4 N-Queens Problem

Question
According to the rules of chess, a queen can attack pieces that share the same row, column, or
diagonal line. Given 𝑛 queens and an 𝑛 × 𝑛 chessboard, find a placement scheme such that no
two queens can attack each other.

As shown in Figure 13-15, when 𝑛 = 4, there are two solutions that can be found. From the perspective
of the backtracking algorithm, an 𝑛 × 𝑛 chessboard has 𝑛2 squares, which provide all the choices
choices. During the process of placing queens one by one, the chessboard state changes continuously,
and the chessboard at each moment represents the state state.

Figure 13-15 Solution to the 4-queens problem

Figure 13-16 illustrates the three constraints of this problem: multiple queens cannot be in the same
row, the same column, or on the same diagonal. It is worth noting that diagonals are divided into two
types: the main diagonal \ and the anti-diagonal /.
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Figure 13-16 Constraints of the n-queens problem

1. Row-By-Row Placement Strategy

Since both the number of queens and the number of rows on the chessboard are 𝑛, we can easily derive
a conclusion: each row of the chessboard allows and only allows exactly one queen to be placed.

This means we can adopt a row-by-row placement strategy: starting from the first row, place one
queen in each row until the last row is completed.

Figure 13-17 shows the row-by-row placement process for the 4-queens problem. Due to space limita-
tions, the figure only expands one search branch of the first row, and all schemes that do not satisfy
the column constraint and diagonal constraints are pruned.

Figure 13-17 Row-by-row placement strategy

Essentially, the row-by-row placement strategy serves a pruning function, as it avoids all search
branches where multiple queens appear in the same row.
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2. Column and Diagonal Pruning

To satisfy the column constraint, we can use a boolean array cols of length 𝑛 to record whether each
column has a queen. Before each placement decision, we use cols to prune columns that already have
queens, and dynamically update the state of cols during backtracking.

Tip
Please note that the origin of the matrix is located in the upper-left corner, where the row index
increases from top to bottom, and the column index increases from left to right.

So how do we handle diagonal constraints? Consider a square on the chessboard with row and column
indices (𝑟𝑜𝑤, 𝑐𝑜𝑙). If we select a specific main diagonal in the matrix, we find that all squares on that
diagonal have the same difference between their row and column indices, meaning that 𝑟𝑜𝑤 − 𝑐𝑜𝑙 is
a constant value for all squares on the main diagonal.

In other words, if two squares satisfy 𝑟𝑜𝑤1 − 𝑐𝑜𝑙1 = 𝑟𝑜𝑤2 − 𝑐𝑜𝑙2, they must be on the same main
diagonal. Using this pattern, we can use the array diags1 shown in Figure 13-18 to record whether
there is a queen on each main diagonal.

Similarly, for all squares on an anti-diagonal, the sum 𝑟𝑜𝑤 + 𝑐𝑜𝑙 is a constant value. We can likewise
use the array diags2 to handle anti-diagonal constraints.

Figure 13-18 Handling column and diagonal constraints

3. Code Implementation

Please note that in an 𝑛-dimensional square matrix, the range of 𝑟𝑜𝑤 − 𝑐𝑜𝑙 is [−𝑛 + 1, 𝑛 − 1], and the
range of 𝑟𝑜𝑤 + 𝑐𝑜𝑙 is [0, 2𝑛 − 2]. Therefore, the number of both main diagonals and anti-diagonals is
2𝑛 − 1, meaning the length of both arrays diags1 and diags2 is 2𝑛 − 1.
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^/ ^^= File: n_queens.cpp ^^=

^* Backtracking algorithm: N queens ^/
void backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>>

&res, vector<bool> &cols,↪
vector<bool> &diags1, vector<bool> &diags2) {

^/ When all rows are placed, record the solution
if (row ^= n) {

res.push_back(state);
return;

}
^/ Traverse all columns
for (int col = 0; col < n; col^+) {

^/ Calculate the main diagonal and anti-diagonal corresponding to this cell
int diag1 = row - col + n - 1;
int diag2 = row + col;
^/ Pruning: do not allow queens to exist in the column, main diagonal, and anti-diagonal

of this cell↪
if (!cols[col] ^& !diags1[diag1] ^& !diags2[diag2]) {

^/ Attempt: place the queen in this cell
state[row][col] = "Q";
cols[col] = diags1[diag1] = diags2[diag2] = true;
^/ Place the next row
backtrack(row + 1, n, state, res, cols, diags1, diags2);
^/ Backtrack: restore this cell to an empty cell
state[row][col] = "#";
cols[col] = diags1[diag1] = diags2[diag2] = false;

}
}

}

^* Solve N queens ^/
vector<vector<vector<string>>> nQueens(int n) {

^/ Initialize an n*n chessboard, where 'Q' represents a queen and '#' represents an empty cell
vector<vector<string>> state(n, vector<string>(n, "#"));
vector<bool> cols(n, false); ^/ Record whether there is a queen in the column
vector<bool> diags1(2 * n - 1, false); ^/ Record whether there is a queen on the main diagonal
vector<bool> diags2(2 * n - 1, false); ^/ Record whether there is a queen on the anti-diagonal
vector<vector<vector<string>>> res;

backtrack(0, n, state, res, cols, diags1, diags2);

return res;
}

Placing 𝑛 queens row by row, considering the column constraint, from the first row to the last row
there are 𝑛, 𝑛−1,…, 2, 1 choices, using𝑂(𝑛!) time. When recording a solution, it is necessary to copy
the matrix state and add it to res, and the copy operation uses 𝑂(𝑛2) time. Therefore, the overall
time complexity is𝑂(𝑛! ⋅ 𝑛2). In practice, pruning based on diagonal constraints can also significantly
reduce the search space, so the search efficiency is often better than the time complexity mentioned
above.

The array state uses𝑂(𝑛2) space, and the arrays cols, diags1, and diags2 each use𝑂(𝑛) space. The
maximum recursion depth is 𝑛, using 𝑂(𝑛) stack frame space. Therefore, the space complexity is
𝑂(𝑛2).
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13.5 Summary

1. Key Review

• The backtracking algorithm is fundamentally an exhaustive search method. It finds solutions that
meet specified conditions by performing a depth-first traversal of the solution space. During the
search process, when a solution satisfying the conditions is found, it is recorded. The search ends
either after finding all solutions or when the traversal is complete.

• The backtracking algorithm search process consists of two parts: attempting and backtracking.
It tries various choices through depth-first search. When encountering situations that violate
constraints, it reverts the previous choice, returns to the previous state, and continues exploring
other options. Attempting and backtracking are operations in opposite directions.

• Backtracking problems typically contain multiple constraints, which can be utilized to implement
pruning operations. Pruning can terminate unnecessary search branches early, significantly im-
proving search efficiency.

• The backtracking algorithm is primarily used to solve search problems and constraint satisfaction
problems. While combinatorial optimization problems can be solved with backtracking, there are
often more efficient or better-performing solutions available.

• The permutation problem aims to find all possible permutations of elements in a given set. We use
an array to recordwhether each element has been selected, thereby pruning search branches that
attempt to select the same element repeatedly, ensuring each element is selected exactly once.

• In the permutation problem, if the set contains duplicate elements, the final result will contain du-
plicate permutations. We need to impose a constraint so that equal elements can only be selected
once per round, which is typically achieved using a hash set.

• The subset-sum problem aims to find all subsets of a given set that sum to a target value. Since
the set is unordered but the search process outputs results in all orders, duplicate subsets are
generated. We sort the data before backtracking and use a variable to indicate the starting point
of each round’s traversal, thereby pruning search branches that generate duplicate subsets.

• For the subset-sum problem, equal elements in the array produce duplicate sets. We leverage
the precondition that the array is sorted by checking whether adjacent elements are equal to
implement pruning, ensuring that equal elements can only be selected once per round.

• The 𝑛 queens problem aims to find placements of 𝑛 queens on an 𝑛 × 𝑛 chessboard such that
no two queens can attack each other. The constraints of this problem include row constraints,
column constraints, and main and anti-diagonal constraints. To satisfy row constraints, we adopt
a row-by-row placement strategy, ensuring exactly one queen is placed in each row.

• The handling of column constraints and diagonal constraints is similar. For column constraints,
we use an array to recordwhether each columnhas a queen, thereby indicatingwhether a selected
cell is valid. For diagonal constraints, we use two arrays to separately recordwhether queens exist
on each main or anti-diagonal. The challenge lies in finding the row-column index pattern that
characterizes cells on the same main (anti-)diagonal.

2. Q & A

Q: How should we understand the relationship between backtracking and recursion?
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Overall, backtracking is an “algorithm strategy”, while recursion is more like a “tool”.

• The backtracking algorithm is typically implemented based on recursion. However, backtracking
is one application scenario of recursion and represents the application of recursion in search
problems.

• The structure of recursion embodies the “subproblem decomposition” problem-solving paradigm,
commonly used to solve problems involving divide-and-conquer, backtracking, and dynamic pro-
gramming (memoized recursion).
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Chapter 14. Dynamic Programming

Abstract
Streams converge into rivers, rivers converge into the sea.
Dynamic programming gathers solutions to small problems into answers to large problems, step
by step guiding us to the shore of problem-solving.
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14.1 Introduction to Dynamic Programming

Dynamic programming is an important algorithmic paradigm that decomposes a problem into a series
of smaller subproblems and avoids redundant computation by storing the solutions to subproblems,
thereby significantly improving time efficiency.

In this section, we start with a classic example, first presenting its brute force backtracking solution,
observing the overlapping subproblems within it, and then gradually deriving a more efficient dynamic
programming solution.

Climbing stairs
Given a staircase with 𝑛 steps, where you can climb 1 or 2 steps at a time, how many different
ways are there to reach the top?

As shown in Figure 14-1, for a 3-step staircase, there are 3 different ways to reach the top.

Figure 14-1 Number of ways to reach the 3rd step

The goal of this problem is to find the number of ways,we can consider using backtracking to enumer-
ate all possibilities. Specifically, imagine climbing stairs as a multi-round selection process: starting
from the ground, choosing to go up 1 or 2 steps in each round, incrementing the count by 1 whenever
the top of the stairs is reached, and pruning when exceeding the top. The code is as follows:

^/ ^^= File: climbing_stairs_backtrack.cpp ^^=

^* Backtracking ^/
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {

^/ When climbing to the n-th stair, add 1 to the solution count
if (state ^= n)

res[0]^+;
^/ Traverse all choices
for (auto &choice : choices) {

^/ Pruning: not allowed to go beyond the n-th stair
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if (state + choice > n)
continue;

^/ Attempt: make choice, update state
backtrack(choices, state + choice, n, res);
^/ Backtrack

}
}

^* Climbing stairs: Backtracking ^/
int climbingStairsBacktrack(int n) {

vector<int> choices = {1, 2}; ^/ Can choose to climb up 1 or 2 stairs
int state = 0; ^/ Start climbing from the 0-th stair
vector<int> res = {0}; ^/ Use res[0] to record the solution count
backtrack(choices, state, n, res);
return res[0];

}

14.1.1 Method 1: Brute Force Search

Backtracking algorithms typically do not explicitly decompose problems, but rather treat solving the
problem as a series of decision steps, searching for all possible solutions through trial and pruning.

We can try to analyze this problem from the perspective of problem decomposition. Let the number of
ways to climb to the 𝑖-th step be 𝑑𝑝[𝑖], then 𝑑𝑝[𝑖] is the original problem, and its subproblems include:

𝑑𝑝[𝑖 − 1], 𝑑𝑝[𝑖 − 2], … , 𝑑𝑝[2], 𝑑𝑝[1]

Since we can only go up 1 or 2 steps in each round, when we stand on the 𝑖-th step, we could only have
been on the 𝑖− 1-th or 𝑖− 2-th step in the previous round. In other words, we can only reach the 𝑖-th
step from the 𝑖 − 1-th or 𝑖 − 2-th step.
This leads to an important conclusion: the number of ways to climb to the 𝑖 − 1-th step plus the
number of ways to climb to the 𝑖−2-th step equals the number of ways to climb to the 𝑖-th step. The
formula is as follows:

𝑑𝑝[𝑖] = 𝑑𝑝[𝑖 − 1] + 𝑑𝑝[𝑖 − 2]

This means that in the stair climbing problem, there exists a recurrence relation among the subprob-
lems, the solution to the original problem can be constructed from the solutions to the subproblems.
Figure 14-2 illustrates this recurrence relation.
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Figure 14-2 Recurrence relation for the number of ways

We can obtain a brute force search solution based on the recurrence formula. Starting from 𝑑𝑝[𝑛],
recursively decompose a larger problem into the sum of two smaller problems, until reaching the
smallest subproblems 𝑑𝑝[1] and 𝑑𝑝[2] and returning. Among them, the solutions to the smallest sub-
problems are known, namely 𝑑𝑝[1] = 1 and 𝑑𝑝[2] = 2, representing 1 and 2 ways to climb to the 1st
and 2nd steps, respectively.
Observe the following code, which, like standard backtracking code, belongs to depth-first search but
is more concise:

^/ ^^= File: climbing_stairs_dfs.cpp ^^=

^* Search ^/
int dfs(int i) {

^/ Known dp[1] and dp[2], return them
if (i ^= 1 ^| i ^= 2)

return i;
^/ dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1) + dfs(i - 2);
return count;

}

^* Climbing stairs: Search ^/
int climbingStairsDFS(int n) {

return dfs(n);
}

Figure 14-3 shows the recursion tree formed by brute force search. For the problem 𝑑𝑝[𝑛], the depth
of its recursion tree is 𝑛, with a time complexity of 𝑂(2𝑛). Exponential order represents explosive
growth; if we input a relatively large 𝑛, we will fall into a long wait.
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Figure 14-3 Recursion tree for climbing stairs

Observing the above figure, the exponential time complexity is caused by “overlapping subproblems”.
For example, 𝑑𝑝[9] is decomposed into 𝑑𝑝[8] and 𝑑𝑝[7], and 𝑑𝑝[8] is decomposed into 𝑑𝑝[7] and 𝑑𝑝[6],
both of which contain the subproblem 𝑑𝑝[7].
And so on, subproblems contain smaller overlapping subproblems, ad infinitum. The vast majority of
computational resources are wasted on these overlapping subproblems.

14.1.2 Method 2: Memoization

To improve algorithm efficiency, we want all overlapping subproblems to be computed only once. For
this purpose, we declare an array mem to record the solution to each subproblem and prune overlapping
subproblems during the search process.

1. When computing 𝑑𝑝[𝑖] for the first time, we record it in mem[i] for later use.
2. When we need to compute 𝑑𝑝[𝑖] again, we can directly retrieve the result from mem[i], thereby
avoiding redundant computation of that subproblem.

The code is as follows:

^/ ^^= File: climbing_stairs_dfs_mem.cpp ^^=

^* Memoization search ^/
int dfs(int i, vector<int> &mem) {

^/ Known dp[1] and dp[2], return them
if (i ^= 1 ^| i ^= 2)

return i;
^/ If record dp[i] exists, return it directly
if (mem[i] ^= -1)

return mem[i];
^/ dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
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^/ Record dp[i]
mem[i] = count;
return count;

}

^* Climbing stairs: Memoization search ^/
int climbingStairsDFSMem(int n) {

^/ mem[i] records the total number of solutions to climb to the i-th stair, -1 means no record
vector<int> mem(n + 1, -1);
return dfs(n, mem);

}

Observe Figure 14-4, after memoization, all overlapping subproblems only need to be computed once,
optimizing the time complexity to𝑂(𝑛), which is a tremendous leap.

Figure 14-4 Recursion tree with memoization

14.1.3 Method 3: Dynamic Programming

Memoization is a “top-down” method: we start from the original problem (root node), recursively de-
compose larger subproblems into smaller ones, until reaching the smallest known subproblems (leaf
nodes). Afterward, by backtracking, we collect the solutions to the subproblems layer by layer to con-
struct the solution to the original problem.

In contrast, dynamic programming is a “bottom-up” method: starting from the solutions to the small-
est subproblems, iteratively constructing solutions to larger subproblems until obtaining the solution
to the original problem.

Since dynamic programming does not include a backtracking process, it only requires loop iteration for
implementation and does not need recursion. In the following code, we initialize an array dp to store the
solutions to subproblems, which serves the same recording function as the array mem in memoization:
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^/ ^^= File: climbing_stairs_dp.cpp ^^=

^* Climbing stairs: Dynamic programming ^/
int climbingStairsDP(int n) {

if (n ^= 1 ^| n ^= 2)
return n;

^/ Initialize dp table, used to store solutions to subproblems
vector<int> dp(n + 1);
^/ Initial state: preset the solution to the smallest subproblem
dp[1] = 1;
dp[2] = 2;
^/ State transition: gradually solve larger subproblems from smaller ones
for (int i = 3; i <= n; i^+) {

dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];

}

Figure 14-5 simulates the execution process of the above code.

Figure 14-5 Dynamic programming process for climbing stairs

Like backtracking algorithms, dynamic programming also uses the “state” concept to represent specific
stages of problem solving, with each state corresponding to a subproblem and its corresponding local
optimal solution. For example, the state in the stair climbing problem is defined as the current stair
step number 𝑖.
Based on the above content, we can summarize the commonly used terminology in dynamic program-
ming.

• The array dp is called the dp table, where 𝑑𝑝[𝑖] represents the solution to the subproblem corre-
sponding to state 𝑖.

• The states corresponding to the smallest subproblems (the 1st and 2nd steps) are called initial
states.

• The recurrence formula 𝑑𝑝[𝑖] = 𝑑𝑝[𝑖 − 1] + 𝑑𝑝[𝑖 − 2] is called the state transition equation.
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14.1.4 Space Optimization

Observant readers may have noticed that since 𝑑𝑝[𝑖] is only related to 𝑑𝑝[𝑖 − 1] and 𝑑𝑝[𝑖 − 2], we do
not need to use an array dp to store the solutions to all subproblems, but can simply use two variables
to roll forward. The code is as follows:

^/ ^^= File: climbing_stairs_dp.cpp ^^=

^* Climbing stairs: Space-optimized dynamic programming ^/
int climbingStairsDPComp(int n) {

if (n ^= 1 ^| n ^= 2)
return n;

int a = 1, b = 2;
for (int i = 3; i <= n; i^+) {

int tmp = b;
b = a + b;
a = tmp;

}
return b;

}

Observing the above code, since the space occupied by the array dp is saved, the space complexity is
reduced from𝑂(𝑛) to𝑂(1).
In dynamic programming problems, the current state often depends only on a limited number of pre-
ceding states, allowing us to retain only the necessary states and save memory space through “dimen-
sion reduction”. This space optimization technique is called “rolling variable” or “rolling array”.

14.2 Characteristics of Dynamic Programming Problems

In the previous section, we learned how dynamic programming solves the original problem by decom-
posing it into subproblems. In fact, subproblem decomposition is a general algorithmic approach, with
different emphases in divide and conquer, dynamic programming, and backtracking.

• Divide and conquer algorithms recursively divide the original problem into multiple independent
subproblems until the smallest subproblems are reached, andmerge the solutions to the subprob-
lems during backtracking to ultimately obtain the solution to the original problem.

• Dynamic programming also recursively decomposes problems, but the main difference from di-
vide and conquer algorithms is that subproblems in dynamic programming are interdependent,
and many overlapping subproblems appear during the decomposition process.

• Backtracking algorithms enumerate all possible solutions through trial and error, and avoid un-
necessary search branches through pruning. The solution to the original problem consists of a
series of decision steps, and we can regard the subsequence before each decision step as a sub-
problem.

In fact, dynamic programming is commonly used to solve optimization problems, which not only con-
tain overlapping subproblems but also have two other major characteristics: optimal substructure and
no aftereffects.
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14.2.1 Optimal Substructure

Wemake a slight modification to the stair climbing problem tomake it more suitable for demonstrating
the concept of optimal substructure.

Climbing stairs with minimum cost
Given a staircase, where you can climb 1 or 2 steps at a time, and each step has a non-negative
integer representing the cost you need to pay at that step. Given a non-negative integer array
𝑐𝑜𝑠𝑡, where 𝑐𝑜𝑠𝑡[𝑖] represents the cost at the 𝑖-th step, and 𝑐𝑜𝑠𝑡[0] is the ground (starting point).
What is the minimum cost required to reach the top?

As shown in Figure 14-6, if the costs of the 1st, 2nd, and 3rd steps are 1, 10, and 1 respectively, then
climbing from the ground to the 3rd step requires a minimum cost of 2.

Figure 14-6 Minimum cost to climb to the 3rd step

Let 𝑑𝑝[𝑖] be the accumulated cost of climbing to the 𝑖-th step. Since the 𝑖-th step can only come from
the 𝑖−1-th or 𝑖−2-th step, 𝑑𝑝[𝑖] can only equal 𝑑𝑝[𝑖−1]+𝑐𝑜𝑠𝑡[𝑖] or 𝑑𝑝[𝑖−2]+𝑐𝑜𝑠𝑡[𝑖]. To minimize
the cost, we should choose the smaller of the two:

𝑑𝑝[𝑖] = min(𝑑𝑝[𝑖 − 1], 𝑑𝑝[𝑖 − 2]) + 𝑐𝑜𝑠𝑡[𝑖]

This leads us to the meaning of optimal substructure: the optimal solution to the original problem is
constructed from the optimal solutions to the subproblems.

This problem clearly has optimal substructure: we select the better one from the optimal solutions to
the two subproblems 𝑑𝑝[𝑖−1] and 𝑑𝑝[𝑖−2], and use it to construct the optimal solution to the original
problem 𝑑𝑝[𝑖].
So, does the stair climbing problem from the previous section have optimal substructure? Its goal is to
find the number of ways, which seems to be a counting problem, but if we change the question: “Find



Chapter 14. Dynamic Programming www.hello-algo.com 327

the maximum number of ways”. We surprisingly discover that although the problem before and after
modification are equivalent, the optimal substructure has emerged: the maximum number of ways
for the 𝑛-th step equals the sum of the maximum number of ways for the 𝑛 − 1-th and 𝑛 − 2-th steps.
Therefore, the interpretation of optimal substructure is quite flexible and will have different meanings
in different problems.

According to the state transition equation and the initial states 𝑑𝑝[1] = 𝑐𝑜𝑠𝑡[1] and 𝑑𝑝[2] = 𝑐𝑜𝑠𝑡[2],
we can obtain the dynamic programming code:

^/ ^^= File: min_cost_climbing_stairs_dp.cpp ^^=

^* Minimum cost climbing stairs: Dynamic programming ^/
int minCostClimbingStairsDP(vector<int> &cost) {

int n = cost.size() - 1;
if (n ^= 1 ^| n ^= 2)

return cost[n];
^/ Initialize dp table, used to store solutions to subproblems
vector<int> dp(n + 1);
^/ Initial state: preset the solution to the smallest subproblem
dp[1] = cost[1];
dp[2] = cost[2];
^/ State transition: gradually solve larger subproblems from smaller ones
for (int i = 3; i <= n; i^+) {

dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n];

}

Figure 14-7 shows the dynamic programming process for the above code.

Figure 14-7 Dynamic programming process for climbing stairs with minimum cost

This problem can also be space-optimized, compressing from one dimension to zero, reducing the
space complexity from𝑂(𝑛) to𝑂(1):
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^/ ^^= File: min_cost_climbing_stairs_dp.cpp ^^=

^* Minimum cost climbing stairs: Space-optimized dynamic programming ^/
int minCostClimbingStairsDPComp(vector<int> &cost) {

int n = cost.size() - 1;
if (n ^= 1 ^| n ^= 2)

return cost[n];
int a = cost[1], b = cost[2];
for (int i = 3; i <= n; i^+) {

int tmp = b;
b = min(a, tmp) + cost[i];
a = tmp;

}
return b;

}

14.2.2 No Aftereffects

No aftereffects is one of the important characteristics that enable dynamic programming to solve prob-
lems effectively. Its definition is: given a certain state, its future development is only related to the
current state and has nothing to do with all past states.

Taking the stair climbing problem as an example, given state 𝑖, it will develop into states 𝑖+1 and 𝑖+2,
corresponding to jumping 1 step and jumping 2 steps, respectively. When making these two choices,
we do not need to consider the states before state 𝑖, as they have no effect on the future of state 𝑖.
However, if we add a constraint to the stair climbing problem, the situation changes.

Climbing stairs with constraint
Given a staircase with 𝑛 steps, where you can climb 1 or 2 steps at a time, but you cannot jump
1 step in two consecutive rounds. How many ways are there to climb to the top?

As shown in Figure 14-8, there are only 2 feasible ways to climb to the 3rd step. The way of jumping 1
step three consecutive times does not satisfy the constraint and is therefore discarded.
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Figure 14-8 Number of ways to climb to the 3rd step with constraint

In this problem, if the previous round was a jump of 1 step, then the next round must jump 2 steps.
This means that the next choice cannot be determined solely by the current state (current stair step
number), but also depends on the previous state (the stair step number from the previous round).

It is not difficult to see that this problem no longer satisfies no aftereffects, and the state transition
equation 𝑑𝑝[𝑖] = 𝑑𝑝[𝑖 − 1] + 𝑑𝑝[𝑖 − 2] also fails, because 𝑑𝑝[𝑖 − 1] represents jumping 1 step in this
round, but it includes many solutions where “the previous round was a jump of 1 step”, which cannot
be directly counted in 𝑑𝑝[𝑖] to satisfy the constraint.
For this reason, we need to expand the state definition: state [𝑖, 𝑗] represents being on the 𝑖-th step
with the previous round having jumped 𝑗 steps, where 𝑗 ∈ {1, 2}. This state definition effectively
distinguishes whether the previous round was a jump of 1 step or 2 steps, allowing us to determine
where the current state came from.

• When the previous round jumped 1 step, the round before that could only choose to jump 2 steps,
i.e., 𝑑𝑝[𝑖, 1] can only be transferred from 𝑑𝑝[𝑖 − 1, 2].

• When the previous round jumped 2 steps, the round before that could choose to jump 1 step or
2 steps, i.e., 𝑑𝑝[𝑖, 2] can be transferred from 𝑑𝑝[𝑖 − 2, 1] or 𝑑𝑝[𝑖 − 2, 2].

As shown in Figure 14-9, under this definition, 𝑑𝑝[𝑖, 𝑗] represents the number of ways for state [𝑖, 𝑗].
The state transition equation is then:

{𝑑𝑝[𝑖, 1] = 𝑑𝑝[𝑖 − 1, 2]
𝑑𝑝[𝑖, 2] = 𝑑𝑝[𝑖 − 2, 1] + 𝑑𝑝[𝑖 − 2, 2]

Figure 14-9 Recurrence relation considering constraints

Finally, return 𝑑𝑝[𝑛, 1] + 𝑑𝑝[𝑛, 2], where the sum of the two represents the total number of ways to
climb to the 𝑛-th step:
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^/ ^^= File: climbing_stairs_constraint_dp.cpp ^^=

^* Climbing stairs with constraint: Dynamic programming ^/
int climbingStairsConstraintDP(int n) {

if (n ^= 1 ^| n ^= 2) {
return 1;

}
^/ Initialize dp table, used to store solutions to subproblems
vector<vector<int>> dp(n + 1, vector<int>(3, 0));
^/ Initial state: preset the solution to the smallest subproblem
dp[1][1] = 1;
dp[1][2] = 0;
dp[2][1] = 0;
dp[2][2] = 1;
^/ State transition: gradually solve larger subproblems from smaller ones
for (int i = 3; i <= n; i^+) {

dp[i][1] = dp[i - 1][2];
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];

}
return dp[n][1] + dp[n][2];

}

In the above case, since we only need to consider one more preceding state, we can still make the
problem satisfy no aftereffects by expanding the state definition. However, some problems have very
severe “aftereffects”.

Climbing stairs with obstacle generation
Given a staircase with 𝑛 steps, where you can climb 1 or 2 steps at a time. It is stipulated that
when climbing to the 𝑖-th step, the system will automatically place an obstacle on the 2𝑖-th
step, and thereafter no round is allowed to jump to the 2𝑖-th step. For example, if the first two
rounds jump to the 2nd and 3rd steps, then afterwards you cannot jump to the 4th and 6th steps.
How many ways are there to climb to the top?

In this problem, the next jump depends on all past states, because each jump places obstacles on higher
steps, affecting future jumps. For such problems, dynamic programming is often difficult to solve.

In fact, many complex combinatorial optimization problems (such as the traveling salesman problem)
do not satisfy no aftereffects. For such problems, we usually choose to use other methods, such as
heuristic search, genetic algorithms, reinforcement learning, etc., to obtain usable local optimal solu-
tions within a limited time.

14.3 Dynamic Programming Problem-Solving Approach

The previous two sections introduced the main characteristics of dynamic programming problems.
Next, let us explore two more practical issues together.

1. How to determine whether a problem is a dynamic programming problem?
2. What is the complete process for solving a dynamic programming problem, and where should we
start?
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14.3.1 Problem Determination

Generally speaking, if a problem contains overlapping subproblems, optimal substructure, and satisfies
no aftereffects, then it is usually suitable for solving with dynamic programming. However, it is difficult
to directly extract these characteristics from the problem description. Therefore, we usually relax the
conditions andfirst observewhether the problem is suitable for solvingwith backtracking (exhaustive
search).

Problems suitable for solving with backtracking usually satisfy the “decision tree model”, which
means the problem can be described using a tree structure, where each node represents a decision
and each path represents a sequence of decisions.

In other words, if a problem contains an explicit concept of decisions, and the solution is generated
through a series of decisions, then it satisfies the decision tree model and can usually be solved using
backtracking.

On this basis, dynamic programming problems also have some “bonus points” for determination.

• The problem contains descriptions such as maximum (minimum) or most (least), indicating opti-
mization.

• The problem’s state can be represented using a list, multi-dimensional matrix, or tree, and a state
has a recurrence relation with its surrounding states.

Correspondingly, there are also some “penalty points”.

• The goal of the problem is to find all possible solutions, rather than finding the optimal solution.
• The problem description has obvious permutation and combination characteristics, requiring the
return of specific multiple solutions.

If a problem satisfies the decision tree model and has relatively obvious “bonus points”, we can assume
it is a dynamic programming problem and verify it during the solving process.

14.3.2 Problem-Solving Steps

The problem-solving process for dynamic programming varies depending on the nature and difficulty
of the problem, but generally follows these steps: describe decisions, define states, establish the 𝑑𝑝
table, derive state transition equations, determine boundary conditions, etc.

To illustrate the problem-solving steps more vividly, we use a classic problem “minimum path sum” as
an example.

Question
Given an 𝑛 × 𝑚 two-dimensional grid grid, where each cell in the grid contains a non-negative
integer representing the cost of that cell. A robot starts from the top-left cell and can only move
down or right at each step until reaching the bottom-right cell. Return the minimum path sum
from the top-left to the bottom-right.

Figure 14-10 shows an example where the minimum path sum for the given grid is 13.
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Figure 14-10 Minimum path sum example data

Step 1: Think about the decisions in each round, define the state, and thus obtain the 𝑑𝑝 table
The decision in each round of this problem is to move one step down or right from the current cell.
Let the row and column indices of the current cell be [𝑖, 𝑗]. After moving down or right, the indices
become [𝑖 + 1, 𝑗] or [𝑖, 𝑗 + 1]. Therefore, the state should include two variables, the row index and
column index, denoted as [𝑖, 𝑗].
State [𝑖, 𝑗] corresponds to the subproblem: the minimum path sum from the starting point [0, 0] to
[𝑖, 𝑗], denoted as 𝑑𝑝[𝑖, 𝑗].
From this, we obtain the two-dimensional 𝑑𝑝 matrix shown in Figure 14-11, whose size is the same as
the input grid 𝑔𝑟𝑖𝑑.

Figure 14-11 State definition and dp table
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Note
The dynamic programming and backtracking processes can be described as a sequence of deci-
sions, and the state consists of all decision variables. It should contain all variables describing
the progress of problem-solving, and should contain sufficient information to derive the next
state.
Each state corresponds to a subproblem, and we define a 𝑑𝑝 table to store the solutions to all
subproblems. Each independent variable of the state is a dimension of the 𝑑𝑝 table. Essentially,
the 𝑑𝑝 table is a mapping between states and solutions to subproblems.

Step 2: Identify the optimal substructure, and then derive the state transition equation

For state [𝑖, 𝑗], it can only be transferred from the cell above [𝑖 − 1, 𝑗] or the cell to the left [𝑖, 𝑗 − 1].
Therefore, the optimal substructure is: the minimum path sum to reach [𝑖, 𝑗] is determined by the
smaller of the minimum path sums of [𝑖, 𝑗 − 1] and [𝑖 − 1, 𝑗].
Based on the above analysis, the state transition equation shown in Figure 14-12 can be derived:

𝑑𝑝[𝑖, 𝑗] = min(𝑑𝑝[𝑖 − 1, 𝑗], 𝑑𝑝[𝑖, 𝑗 − 1]) + 𝑔𝑟𝑖𝑑[𝑖, 𝑗]

Figure 14-12 Optimal substructure and state transition equation

Note
Based on the defined 𝑑𝑝 table, think about the relationship between the original problem and
subproblems, and find themethod to construct the optimal solution to the original problem from
the optimal solutions to the subproblems, which is the optimal substructure.
Once we identify the optimal substructure, we can use it to construct the state transition equa-
tion.

Step 3: Determine boundary conditions and state transition order
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In this problem, states in the first row can only come from the state to their left, and states in the first
column can only come from the state above them. Therefore, the first row 𝑖 = 0 and first column 𝑗 = 0
are boundary conditions.

As shown in Figure 14-13, since each cell is transferred from the cell to its left and the cell above it,
we use loops to traverse the matrix, with the outer loop traversing rows and the inner loop traversing
columns.

Figure 14-13 Boundary conditions and state transition order

Note
Boundary conditions in dynamic programming are used to initialize the 𝑑𝑝 table, and in search
are used for pruning.
The core of state transition order is to ensure that when computing the solution to the current
problem, all the smaller subproblems it depends on have already been computed correctly.

Based on the above analysis, we can directly write the dynamic programming code. However, sub-
problem decomposition is a top-down approach, so implementing in the order “brute force search→
memoization→ dynamic programming” is more aligned with thinking habits.

1. Method 1: Brute Force Search

Starting from state [𝑖, 𝑗], continuously decompose into smaller states [𝑖 − 1, 𝑗] and [𝑖, 𝑗 − 1]. The
recursive function includes the following elements.

• Recursive parameters: state [𝑖, 𝑗].
• Return value: minimum path sum from [0, 0] to [𝑖, 𝑗], which is 𝑑𝑝[𝑖, 𝑗].
• Termination condition: when 𝑖 = 0 and 𝑗 = 0, return cost 𝑔𝑟𝑖𝑑[0, 0].
• Pruning: when 𝑖 < 0 or 𝑗 < 0, the index is out of bounds, return cost+∞, representing infeasi-
bility.

The implementation code is as follows:
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^/ ^^= File: min_path_sum.cpp ^^=

^* Minimum path sum: Brute-force search ^/
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {

^/ If it's the top-left cell, terminate the search
if (i ^= 0 ^& j ^= 0) {

return grid[0][0];
}
^/ If row or column index is out of bounds, return +∞ cost
if (i < 0 ^| j < 0) {

return INT_MAX;
}
^/ Calculate the minimum path cost from top-left to (i-1, j) and (i, j-1)
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
^/ Return the minimum path cost from top-left to (i, j)
return min(left, up) ^= INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;

}

Figure 14-14 shows the recursion tree rooted at 𝑑𝑝[2, 1], which includes some overlapping subproblems
whose number will increase sharply as the size of grid grid grows.

Essentially, the reason for overlapping subproblems is: there are multiple paths from the top-left cor-
ner to reach a certain cell.

Figure 14-14 Brute force search recursion tree

Each state has two choices, down and right, so the total number of steps from the top-left corner to
the bottom-right corner is𝑚 + 𝑛 − 2, giving a worst-case time complexity of𝑂(2𝑚+𝑛), where 𝑛 and
𝑚 are the number of rows and columns of the grid, respectively. Note that this calculation does not
account for situations near the grid boundaries, where only one choice remains when reaching the grid
boundary, so the actual number of paths will be somewhat less.
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2. Method 2: Memoization

We introduce a memo list mem of the same size as grid grid to record the solutions to subproblems and
prune overlapping subproblems:

^/ ^^= File: min_path_sum.cpp ^^=

^* Minimum path sum: Memoization search ^/
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {

^/ If it's the top-left cell, terminate the search
if (i ^= 0 ^& j ^= 0) {

return grid[0][0];
}
^/ If row or column index is out of bounds, return +∞ cost
if (i < 0 ^| j < 0) {

return INT_MAX;
}
^/ If there's a record, return it directly
if (mem[i][j] ^= -1) {

return mem[i][j];
}
^/ Minimum path cost for left and upper cells
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
^/ Record and return the minimum path cost from top-left to (i, j)
mem[i][j] = min(left, up) ^= INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
return mem[i][j];

}

As shown in Figure 14-15, after introducing memoization, all subproblem solutions only need to be
computed once, so the time complexity depends on the total number of states, which is the grid size
𝑂(𝑛𝑚).

Figure 14-15 Memoization recursion tree

3. Method 3: Dynamic Programming

Implement the dynamic programming solution based on iteration, as shown in the code below:
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^/ ^^= File: min_path_sum.cpp ^^=

^* Minimum path sum: Dynamic programming ^/
int minPathSumDP(vector<vector<int>> &grid) {

int n = grid.size(), m = grid[0].size();
^/ Initialize dp table
vector<vector<int>> dp(n, vector<int>(m));
dp[0][0] = grid[0][0];
^/ State transition: first row
for (int j = 1; j < m; j^+) {

dp[0][j] = dp[0][j - 1] + grid[0][j];
}
^/ State transition: first column
for (int i = 1; i < n; i^+) {

dp[i][0] = dp[i - 1][0] + grid[i][0];
}
^/ State transition: rest of the rows and columns
for (int i = 1; i < n; i^+) {

for (int j = 1; j < m; j^+) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];

}
}
return dp[n - 1][m - 1];

}

Figure 14-16 shows the state transition process for minimum path sum, which traverses the entire grid,
thus the time complexity is𝑂(𝑛𝑚).
The array dp has size 𝑛 × 𝑚, thus the space complexity is𝑂(𝑛𝑚).
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Figure 14-16 Dynamic programming process for minimum path sum

4. Space Optimization

Since each cell is only related to the cell to its left and the cell above it, we can use a single-row array
to implement the 𝑑𝑝 table.
Note that since the array dp can only represent the state of one row, we cannot initialize the first column
state in advance, but rather update it when traversing each row:
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^/ ^^= File: min_path_sum.cpp ^^=

^* Minimum path sum: Space-optimized dynamic programming ^/
int minPathSumDPComp(vector<vector<int>> &grid) {

int n = grid.size(), m = grid[0].size();
^/ Initialize dp table
vector<int> dp(m);
^/ State transition: first row
dp[0] = grid[0][0];
for (int j = 1; j < m; j^+) {

dp[j] = dp[j - 1] + grid[0][j];
}
^/ State transition: rest of the rows
for (int i = 1; i < n; i^+) {

^/ State transition: first column
dp[0] = dp[0] + grid[i][0];
^/ State transition: rest of the columns
for (int j = 1; j < m; j^+) {

dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
}

}
return dp[m - 1];

}

14.4 0-1 Knapsack Problem

The knapsack problem is an excellent introductory problem for dynamic programming and is one of the
most common problem forms in dynamic programming. It has many variants, such as the 0-1 knapsack
problem, the unbounded knapsack problem, and the multiple knapsack problem.

In this section, we will first solve the most common 0-1 knapsack problem.

Question
Given 𝑛 items, where the weight of the 𝑖-th item is 𝑤𝑔𝑡[𝑖 − 1] and its value is 𝑣𝑎𝑙[𝑖 − 1], and a
knapsack with capacity 𝑐𝑎𝑝. Each item can only be selected once. What is the maximum value
that can be placed in the knapsack within the capacity limit?

Observe Figure 14-17. Since item number 𝑖 starts counting from 1 and array indices start from 0, item
𝑖 corresponds to weight 𝑤𝑔𝑡[𝑖 − 1] and value 𝑣𝑎𝑙[𝑖 − 1].
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Figure 14-17 Example data for 0-1 knapsack

We can view the 0-1 knapsack problem as a process consisting of 𝑛 rounds of decisions, where for each
item there are two decisions: not putting it in and putting it in, thus the problem satisfies the decision
tree model.

The goal of this problem is to find “the maximum value that can be placed in the knapsack within the
capacity limit”, so it is more likely to be a dynamic programming problem.

Step 1: Think about the decisions in each round, define the state, and thus obtain the 𝑑𝑝 table
For each item, if not placed in the knapsack, the knapsack capacity remains unchanged; if placed in,
the knapsack capacity decreases. From this, we can derive the state definition: current item number 𝑖
and knapsack capacity 𝑐, denoted as [𝑖, 𝑐].
State [𝑖, 𝑐] corresponds to the subproblem: the maximum value among the first 𝑖 items in a knapsack
of capacity 𝑐, denoted as 𝑑𝑝[𝑖, 𝑐].
What we need to find is 𝑑𝑝[𝑛, 𝑐𝑎𝑝], so we need a two-dimensional 𝑑𝑝 table of size (𝑛+1)×(𝑐𝑎𝑝+1).
Step 2: Identify the optimal substructure, and then derive the state transition equation

After making the decision for item 𝑖, what remains is the subproblem of the first 𝑖−1 items, which can
be divided into the following two cases.

• Not putting item 𝑖: The knapsack capacity remains unchanged, and the state changes to [𝑖−1, 𝑐].
• Putting item 𝑖: The knapsack capacity decreases by 𝑤𝑔𝑡[𝑖 − 1], the value increases by 𝑣𝑎𝑙[𝑖 − 1],
and the state changes to [𝑖 − 1, 𝑐 − 𝑤𝑔𝑡[𝑖 − 1]].

The above analysis reveals the optimal substructure of this problem: themaximumvalue 𝑑𝑝[𝑖, 𝑐] equals
the larger value between not putting item 𝑖 and putting item 𝑖. From this, the state transition equation
can be derived:

𝑑𝑝[𝑖, 𝑐] = max(𝑑𝑝[𝑖 − 1, 𝑐], 𝑑𝑝[𝑖 − 1, 𝑐 − 𝑤𝑔𝑡[𝑖 − 1]] + 𝑣𝑎𝑙[𝑖 − 1])
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Note that if the weight of the current item𝑤𝑔𝑡[𝑖− 1] exceeds the remaining knapsack capacity 𝑐, then
the only option is not to put it in the knapsack.

Step 3: Determine boundary conditions and state transition order

When there are no items or the knapsack capacity is 0, the maximum value is 0, i.e., the first column
𝑑𝑝[𝑖, 0] and the first row 𝑑𝑝[0, 𝑐] are both equal to 0.
The current state [𝑖, 𝑐] is transferred from the state above [𝑖 − 1, 𝑐] and the state in the upper-left
[𝑖 − 1, 𝑐 − 𝑤𝑔𝑡[𝑖 − 1]], so the entire 𝑑𝑝 table is traversed in order through two nested loops.
Based on the above analysis, we will next implement the brute force search, memoization, and dynamic
programming solutions in order.

1. Method 1: Brute Force Search

The search code includes the following elements.

• Recursive parameters: state [𝑖, 𝑐].
• Return value: solution to the subproblem 𝑑𝑝[𝑖, 𝑐].
• Termination condition: when the item number is out of bounds 𝑖 = 0 or the remaining knapsack
capacity is 0, terminate recursion and return value 0.

• Pruning: if the weight of the current item exceeds the remaining knapsack capacity, only the
option of not putting it in is available.

^/ ^^= File: knapsack.cpp ^^=

^* 0-1 knapsack: Brute-force search ^/
int knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {

^/ If all items have been selected or knapsack has no remaining capacity, return value 0
if (i ^= 0 ^| c ^= 0) {

return 0;
}
^/ If exceeds knapsack capacity, can only choose not to put it in
if (wgt[i - 1] > c) {

return knapsackDFS(wgt, val, i - 1, c);
}
^/ Calculate the maximum value of not putting in and putting in item i
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
^/ Return the larger value of the two options
return max(no, yes);

}

As shown in Figure 14-18, since each item generates two search branches of not selecting and selecting,
the time complexity is𝑂(2𝑛).
Observing the recursion tree, it is easy to see overlapping subproblems, such as 𝑑𝑝[1, 10]. When there
are many items, large knapsack capacity, and especially many items with the same weight, the number
of overlapping subproblems will increase significantly.
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Figure 14-18 Brute force search recursion tree for 0-1 knapsack problem

2. Method 2: Memoization

To ensure that overlapping subproblems are only computed once, we use a memo list mem to record the
solutions to subproblems, where mem[i][c] corresponds to 𝑑𝑝[𝑖, 𝑐].
After introducing memoization, the time complexity depends on the number of subproblems, which
is𝑂(𝑛 × 𝑐𝑎𝑝). The implementation code is as follows:

^/ ^^= File: knapsack.cpp ^^=

^* 0-1 knapsack: Memoization search ^/
int knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {

^/ If all items have been selected or knapsack has no remaining capacity, return value 0
if (i ^= 0 ^| c ^= 0) {

return 0;
}
^/ If there's a record, return it directly
if (mem[i][c] ^= -1) {

return mem[i][c];
}
^/ If exceeds knapsack capacity, can only choose not to put it in
if (wgt[i - 1] > c) {

return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
^/ Calculate the maximum value of not putting in and putting in item i
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
^/ Record and return the larger value of the two options
mem[i][c] = max(no, yes);
return mem[i][c];

}

Figure 14-19 shows the search branches pruned in memoization.
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Figure 14-19 Memoization recursion tree for 0-1 knapsack problem

3. Method 3: Dynamic Programming

Dynamic programming is essentially the process of filling the 𝑑𝑝 table during state transitions. The
code is as follows:

^/ ^^= File: knapsack.cpp ^^=

^* 0-1 knapsack: Dynamic programming ^/
int knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {

int n = wgt.size();
^/ Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
^/ State transition
for (int i = 1; i <= n; i^+) {

for (int c = 1; c <= cap; c^+) {
if (wgt[i - 1] > c) {

^/ If exceeds knapsack capacity, don't select item i
dp[i][c] = dp[i - 1][c];

} else {
^/ The larger value between not selecting and selecting item i
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);

}
}

}
return dp[n][cap];

}

As shown in Figure 14-20, both time complexity and space complexity are determined by the size of the
array dp, which is𝑂(𝑛 × 𝑐𝑎𝑝).
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Figure 14-20 Dynamic programming process for 0-1 knapsack problem

4. Space Optimization

Since each state is only related to the state in the row above it, we can use two arrays rolling forward
to reduce the space complexity from𝑂(𝑛2) to𝑂(𝑛).
Further thinking, can we achieve space optimization using just one array? Observing, we can see that
each state is transferred from the cell directly above or the cell in the upper-left. If there is only one
array, when we start traversing row 𝑖, that array still stores the state of row 𝑖 − 1.

• If using forward traversal, then when traversing to 𝑑𝑝[𝑖, 𝑗], the values in the upper-left 𝑑𝑝[𝑖−1, 1]
~ 𝑑𝑝[𝑖 − 1, 𝑗 − 1]may have already been overwritten, thus preventing correct state transition.

• If using reverse traversal, there will be no overwriting issue, and state transition can proceed
correctly.

Figure 14-21 shows the transition process from row 𝑖 = 1 to row 𝑖 = 2 using a single array. Please
consider the difference between forward and reverse traversal.
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Figure 14-21 Space-optimized dynamic programming process for 0-1 knapsack

In the code implementation, we simply need to delete the first dimension 𝑖 of the array dp and change
the inner loop to reverse traversal:

^/ ^^= File: knapsack.cpp ^^=

^* 0-1 knapsack: Space-optimized dynamic programming ^/
int knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {

int n = wgt.size();
^/ Initialize dp table
vector<int> dp(cap + 1, 0);
^/ State transition
for (int i = 1; i <= n; i^+) {

^/ Traverse in reverse order
for (int c = cap; c >= 1; c--) {

if (wgt[i - 1] <= c) {
^/ The larger value between not selecting and selecting item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);

}
}

}
return dp[cap];

}

14.5 Unbounded Knapsack Problem

In this section, we first solve another common knapsack problem: the unbounded knapsack, and then
explore a special case of it: the coin change problem.
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14.5.1 Unbounded Knapsack Problem

Question
Given 𝑛 items, where the weight of the 𝑖-th item is 𝑤𝑔𝑡[𝑖 − 1] and its value is 𝑣𝑎𝑙[𝑖 − 1], and a
knapsack with capacity 𝑐𝑎𝑝. Each item can be selected multiple times. What is the maximum
value that can be placed in the knapsack within the capacity limit? An example is shown in Figure
14-22.

Figure 14-22 Example data for unbounded knapsack problem

1. Dynamic Programming Approach

The unbounded knapsack problem is very similar to the 0-1 knapsack problem, differing only in that
there is no limit on the number of times an item can be selected.

• In the 0-1 knapsack problem, there is only one of each type of item, so after placing item 𝑖 in the
knapsack, we can only choose from the first 𝑖 − 1 items.

• In the unbounded knapsack problem, the quantity of each type of item is unlimited, so after plac-
ing item 𝑖 in the knapsack, we can still choose from the first 𝑖 items.

Under the rules of the unbounded knapsack problem, the changes in state [𝑖, 𝑐] are divided into two
cases.

• Not putting item 𝑖: Same as the 0-1 knapsack problem, transfer to [𝑖 − 1, 𝑐].
• Putting item 𝑖: Different from the 0-1 knapsack problem, transfer to [𝑖, 𝑐 − 𝑤𝑔𝑡[𝑖 − 1]].

Thus, the state transition equation becomes:

𝑑𝑝[𝑖, 𝑐] = max(𝑑𝑝[𝑖 − 1, 𝑐], 𝑑𝑝[𝑖, 𝑐 − 𝑤𝑔𝑡[𝑖 − 1]] + 𝑣𝑎𝑙[𝑖 − 1])
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2. Code Implementation

Comparing the code for the two problems, there is one change in state transition from 𝑖 − 1 to 𝑖, with
everything else identical:

^/ ^^= File: unbounded_knapsack.cpp ^^=

^* Unbounded knapsack: Dynamic programming ^/
int unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {

int n = wgt.size();
^/ Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
^/ State transition
for (int i = 1; i <= n; i^+) {

for (int c = 1; c <= cap; c^+) {
if (wgt[i - 1] > c) {

^/ If exceeds knapsack capacity, don't select item i
dp[i][c] = dp[i - 1][c];

} else {
^/ The larger value between not selecting and selecting item i
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);

}
}

}
return dp[n][cap];

}

3. Space Optimization

Since the current state is transferred from states on the left and above, after space optimization, each
row in the 𝑑𝑝 table should be traversed in forward order.
This traversal order is exactly opposite to the 0-1 knapsack. Please refer to Figure 14-23 to understand
the difference between the two.
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Figure 14-23 Space-optimized dynamic programming process for unbounded knapsack problem

The code implementation is relatively simple, just delete the first dimension of the array dp:

^/ ^^= File: unbounded_knapsack.cpp ^^=

^* Unbounded knapsack: Space-optimized dynamic programming ^/
int unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {

int n = wgt.size();
^/ Initialize dp table
vector<int> dp(cap + 1, 0);
^/ State transition
for (int i = 1; i <= n; i^+) {

for (int c = 1; c <= cap; c^+) {
if (wgt[i - 1] > c) {

^/ If exceeds knapsack capacity, don't select item i
dp[c] = dp[c];

} else {
^/ The larger value between not selecting and selecting item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);

}
}

}
return dp[cap];

}

14.5.2 Coin Change Problem

The knapsack problem represents a large class of dynamic programming problems and has many vari-
ants, such as the coin change problem.

Question
Given 𝑛 types of coins, where the denomination of the 𝑖-th type of coin is 𝑐𝑜𝑖𝑛𝑠[𝑖 − 1], and the
target amount is 𝑎𝑚𝑡. Each type of coin can be selected multiple times. What is the minimum
number of coins needed to make up the target amount? If it is impossible to make up the target
amount, return−1. An example is shown in Figure 14-24.
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Figure 14-24 Example data for coin change problem

1. Dynamic Programming Approach

The coin change problem can be viewed as a special case of the unbounded knapsack problem, with
the following connections and differences.

• The two problems can be converted to each other: “item” corresponds to “coin”, “item weight”
corresponds to “coin denomination”, and “knapsack capacity” corresponds to “target amount”.

• The optimization goals are opposite: the unbounded knapsack problem aims to maximize item
value, while the coin change problem aims to minimize the number of coins.

• The unbounded knapsack problem seeks solutions “not exceeding” the knapsack capacity, while
the coin change problem seeks solutions that “exactly” make up the target amount.

Step 1: Think about the decisions in each round, define the state, and thus obtain the 𝑑𝑝 table
State [𝑖, 𝑎] corresponds to the subproblem: the minimum number of coins among the first 𝑖 types of
coins that can make up amount 𝑎, denoted as 𝑑𝑝[𝑖, 𝑎].
The two-dimensional 𝑑𝑝 table has size (𝑛 + 1) × (𝑎𝑚𝑡 + 1).
Step 2: Identify the optimal substructure, and then derive the state transition equation

This problem differs from the unbounded knapsack problem in the following two aspects regarding the
state transition equation.

• This problem seeks the minimum value, so the operator max() needs to be changed to min().
• The optimization target is the number of coins rather than item value, so when a coin is selected,
simply execute+1.

𝑑𝑝[𝑖, 𝑎] = min(𝑑𝑝[𝑖 − 1, 𝑎], 𝑑𝑝[𝑖, 𝑎 − 𝑐𝑜𝑖𝑛𝑠[𝑖 − 1]] + 1)

Step 3: Determine boundary conditions and state transition order

When the target amount is 0, the minimum number of coins needed to make it up is 0, so all 𝑑𝑝[𝑖, 0] in
the first column equal 0.
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When there are no coins, it is impossible to make up any amount> 0, which is an invalid solution. To
enable the min() function in the state transition equation to identify and filter out invalid solutions, we
consider using+∞ to represent them, i.e., set all 𝑑𝑝[0, 𝑎] in the first row to+∞.

2. Code Implementation

Most programming languages do not provide a +∞ variable, and can only use the maximum value of
integer type int as a substitute. However, this can lead to large number overflow: the+1 operation in
the state transition equation may cause overflow.

For this reason, we use the number 𝑎𝑚𝑡 + 1 to represent invalid solutions, because the maximum
number of coins needed to make up 𝑎𝑚𝑡 is at most 𝑎𝑚𝑡. Before returning, check whether 𝑑𝑝[𝑛, 𝑎𝑚𝑡]
equals 𝑎𝑚𝑡 + 1; if so, return−1, indicating that the target amount cannot be made up. The code is as
follows:

^/ ^^= File: coin_change.cpp ^^=

^* Coin change: Dynamic programming ^/
int coinChangeDP(vector<int> &coins, int amt) {

int n = coins.size();
int MAX = amt + 1;
^/ Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));
^/ State transition: first row and first column
for (int a = 1; a <= amt; a^+) {

dp[0][a] = MAX;
}
^/ State transition: rest of the rows and columns
for (int i = 1; i <= n; i^+) {

for (int a = 1; a <= amt; a^+) {
if (coins[i - 1] > a) {

^/ If exceeds target amount, don't select coin i
dp[i][a] = dp[i - 1][a];

} else {
^/ The smaller value between not selecting and selecting coin i
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);

}
}

}
return dp[n][amt] ^= MAX ? dp[n][amt] : -1;

}

Figure 14-25 shows the dynamic programming process for coin change, which is very similar to the
unbounded knapsack problem.
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Figure 14-25 Dynamic programming process for coin change problem

3. Space Optimization

The space optimization for the coin change problem is handled in the same way as the unbounded
knapsack problem:

^/ ^^= File: coin_change.cpp ^^=

^* Coin change: Space-optimized dynamic programming ^/
int coinChangeDPComp(vector<int> &coins, int amt) {

int n = coins.size();
int MAX = amt + 1;
^/ Initialize dp table
vector<int> dp(amt + 1, MAX);
dp[0] = 0;
^/ State transition
for (int i = 1; i <= n; i^+) {

for (int a = 1; a <= amt; a^+) {
if (coins[i - 1] > a) {

^/ If exceeds target amount, don't select coin i
dp[a] = dp[a];

} else {



Chapter 14. Dynamic Programming www.hello-algo.com 354

^/ The smaller value between not selecting and selecting coin i
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);

}
}

}
return dp[amt] ^= MAX ? dp[amt] : -1;

}

14.5.3 Coin Change Problem Ii

Question
Given 𝑛 types of coins, where the denomination of the 𝑖-th type of coin is 𝑐𝑜𝑖𝑛𝑠[𝑖 − 1], and the
target amount is 𝑎𝑚𝑡. Each type of coin can be selected multiple times. What is the number of
coin combinations that can make up the target amount? An example is shown in Figure 14-26.

Figure 14-26 Example data for coin change problem II

1. Dynamic Programming Approach

Compared to the previous problem, this problem’s goal is to find the number of combinations, so the
subproblem becomes: the number of combinations among the first 𝑖 types of coins that can make up
amount 𝑎. The 𝑑𝑝 table remains a two-dimensional matrix of size (𝑛 + 1) × (𝑎𝑚𝑡 + 1).
The number of combinations for the current state equals the sum of the combinations from not select-
ing the current coin and selecting the current coin. The state transition equation is:

𝑑𝑝[𝑖, 𝑎] = 𝑑𝑝[𝑖 − 1, 𝑎] + 𝑑𝑝[𝑖, 𝑎 − 𝑐𝑜𝑖𝑛𝑠[𝑖 − 1]]
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When the target amount is 0, no coins need to be selected to make up the target amount, so all 𝑑𝑝[𝑖, 0]
in the first column should be initialized to 1. When there are no coins, it is impossible to make up any
amount> 0, so all 𝑑𝑝[0, 𝑎] in the first row equal 0.

2. Code Implementation

^/ ^^= File: coin_change_ii.cpp ^^=

^* Coin change II: Dynamic programming ^/
int coinChangeIIDP(vector<int> &coins, int amt) {

int n = coins.size();
^/ Initialize dp table
vector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));
^/ Initialize first column
for (int i = 0; i <= n; i^+) {

dp[i][0] = 1;
}
^/ State transition
for (int i = 1; i <= n; i^+) {

for (int a = 1; a <= amt; a^+) {
if (coins[i - 1] > a) {

^/ If exceeds target amount, don't select coin i
dp[i][a] = dp[i - 1][a];

} else {
^/ Sum of the two options: not selecting and selecting coin i
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];

}
}

}
return dp[n][amt];

}

3. Space Optimization

The space optimization is handled in the same way, just delete the coin dimension:

^/ ^^= File: coin_change_ii.cpp ^^=

^* Coin change II: Space-optimized dynamic programming ^/
int coinChangeIIDPComp(vector<int> &coins, int amt) {

int n = coins.size();
^/ Initialize dp table
vector<int> dp(amt + 1, 0);
dp[0] = 1;
^/ State transition
for (int i = 1; i <= n; i^+) {

for (int a = 1; a <= amt; a^+) {
if (coins[i - 1] > a) {

^/ If exceeds target amount, don't select coin i
dp[a] = dp[a];

} else {
^/ Sum of the two options: not selecting and selecting coin i
dp[a] = dp[a] + dp[a - coins[i - 1]];

}
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}
}
return dp[amt];

}

14.6 Edit Distance Problem

Edit distance, also known as Levenshtein distance, refers to the minimum number of edits required
to transform one string into another, commonly used in information retrieval and natural language
processing to measure the similarity between two sequences.

Question
Given two strings 𝑠 and 𝑡, return the minimum number of edits required to transform 𝑠 into 𝑡.
You can perform three types of edit operations on a string: insert a character, delete a character,
or replace a character with any other character.

As shown in Figure 14-27, transforming kitten into sitting requires 3 edits, including 2 replacements
and 1 insertion; transforming hello into algo requires 3 steps, including 2 replacements and 1 dele-
tion.

Figure 14-27 Example data for edit distance

The edit distance problem can be naturally explained using the decision tree model. Strings corre-
spond to tree nodes, and a round of decision (one edit operation) corresponds to an edge of the tree.

As shown in Figure 14-28, without restricting operations, each node can branch into many edges, with
each edge corresponding to one operation, meaning there are many possible paths to transform hello
into algo.

From the perspective of the decision tree, the goal of this problem is to find the shortest path between
node hello and node algo.
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Figure 14-28 Representing edit distance problem based on decision tree model

1. Dynamic Programming Approach

Step 1: Think about the decisions in each round, define the state, and thus obtain the 𝑑𝑝 table
Each round of decision involves performing one edit operation on string 𝑠.
We want the problem scale to gradually decrease during the editing process, which allows us to con-
struct subproblems. Let the lengths of strings 𝑠 and 𝑡 be 𝑛 and 𝑚 respectively. We first consider the
tail characters of the two strings, 𝑠[𝑛 − 1] and 𝑡[𝑚 − 1].

• If 𝑠[𝑛−1] and 𝑡[𝑚−1] are the same, we can skip them and directly consider 𝑠[𝑛−2] and 𝑡[𝑚−2].
• If 𝑠[𝑛−1] and 𝑡[𝑚−1] are different, we need to perform one edit on 𝑠 (insert, delete, or replace)
to make the tail characters of the two strings the same, allowing us to skip them and consider a
smaller-scale problem.

In other words, each round of decision (edit operation) we make on string 𝑠 will change the remaining
characters to bematched in 𝑠 and 𝑡. Therefore, the state is the 𝑖-th and 𝑗-th characters currently being
considered in 𝑠 and 𝑡, denoted as [𝑖, 𝑗].
State [𝑖, 𝑗] corresponds to the subproblem: the minimum number of edits required to change the first
𝑖 characters of 𝑠 into the first 𝑗 characters of 𝑡.
From this, we obtain a two-dimensional 𝑑𝑝 table of size (𝑖 + 1) × (𝑗 + 1).
Step 2: Identify the optimal substructure, and then derive the state transition equation

Consider subproblem 𝑑𝑝[𝑖, 𝑗], where the tail characters of the corresponding two strings are 𝑠[𝑖 − 1]
and 𝑡[𝑗 − 1], which can be divided into the three cases shown in Figure 14-29 based on different edit
operations.

1. Insert 𝑡[𝑗 − 1] after 𝑠[𝑖 − 1], then the remaining subproblem is 𝑑𝑝[𝑖, 𝑗 − 1].
2. Delete 𝑠[𝑖 − 1], then the remaining subproblem is 𝑑𝑝[𝑖 − 1, 𝑗].
3. Replace 𝑠[𝑖 − 1] with 𝑡[𝑗 − 1], then the remaining subproblem is 𝑑𝑝[𝑖 − 1, 𝑗 − 1].
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Figure 14-29 State transition for edit distance

Based on the above analysis, the optimal substructure can be obtained: the minimum number of edits
for 𝑑𝑝[𝑖, 𝑗] equals the minimum among the minimum edit steps of 𝑑𝑝[𝑖, 𝑗 − 1], 𝑑𝑝[𝑖 − 1, 𝑗], and 𝑑𝑝[𝑖 −
1, 𝑗 − 1], plus the edit step 1 for this time. The corresponding state transition equation is:

𝑑𝑝[𝑖, 𝑗] = min(𝑑𝑝[𝑖, 𝑗 − 1], 𝑑𝑝[𝑖 − 1, 𝑗], 𝑑𝑝[𝑖 − 1, 𝑗 − 1]) + 1

Please note thatwhen 𝑠[𝑖 − 1] and 𝑡[𝑗 − 1] are the same, no edit is required for the current character,
in which case the state transition equation is:

𝑑𝑝[𝑖, 𝑗] = 𝑑𝑝[𝑖 − 1, 𝑗 − 1]

Step 3: Determine boundary conditions and state transition order

When both strings are empty, the number of edit steps is 0, i.e., 𝑑𝑝[0, 0] = 0. When 𝑠 is empty but 𝑡
is not, the minimum number of edit steps equals the length of 𝑡, i.e., the first row 𝑑𝑝[0, 𝑗] = 𝑗. When
𝑠 is not empty but 𝑡 is empty, the minimum number of edit steps equals the length of 𝑠, i.e., the first
column 𝑑𝑝[𝑖, 0] = 𝑖.
Observing the state transition equation, the solution 𝑑𝑝[𝑖, 𝑗] depends on solutions to the left, above,
and upper-left, so the entire 𝑑𝑝 table can be traversed in order through two nested loops.

2. Code Implementation

^/ ^^= File: edit_distance.cpp ^^=

^* Edit distance: Dynamic programming ^/
int editDistanceDP(string s, string t) {
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int n = s.length(), m = t.length();
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
^/ State transition: first row and first column
for (int i = 1; i <= n; i^+) {

dp[i][0] = i;
}
for (int j = 1; j <= m; j^+) {

dp[0][j] = j;
}
^/ State transition: rest of the rows and columns
for (int i = 1; i <= n; i^+) {

for (int j = 1; j <= m; j^+) {
if (s[i - 1] ^= t[j - 1]) {

^/ If two characters are equal, skip both characters
dp[i][j] = dp[i - 1][j - 1];

} else {
^/ Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;

}
}

}
return dp[n][m];

}

As shown in Figure 14-30, the state transition process for the edit distance problem is very similar to
the knapsack problem and can both be viewed as the process of filling a two-dimensional grid.
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Figure 14-30 Dynamic programming process for edit distance

3. Space Optimization

Since 𝑑𝑝[𝑖, 𝑗] is transferred from the solutions above 𝑑𝑝[𝑖 − 1, 𝑗], to the left 𝑑𝑝[𝑖, 𝑗 − 1], and to the
upper-left 𝑑𝑝[𝑖 − 1, 𝑗 − 1], forward traversal will lose the upper-left solution 𝑑𝑝[𝑖 − 1, 𝑗 − 1], and
reverse traversal cannot build 𝑑𝑝[𝑖, 𝑗 − 1] in advance, so neither traversal order is feasible.
For this reason, we can use a variable leftup to temporarily store the upper-left solution 𝑑𝑝[𝑖−1, 𝑗−1],
so we only need to consider the solutions to the left and above. This situation is the same as the
unbounded knapsack problem, allowing for forward traversal. The code is as follows:

^/ ^^= File: edit_distance.cpp ^^=

^* Edit distance: Space-optimized dynamic programming ^/
int editDistanceDPComp(string s, string t) {

int n = s.length(), m = t.length();
vector<int> dp(m + 1, 0);
^/ State transition: first row
for (int j = 1; j <= m; j^+) {

dp[j] = j;
}
^/ State transition: rest of the rows
for (int i = 1; i <= n; i^+) {

^/ State transition: first column
int leftup = dp[0]; ^/ Temporarily store dp[i-1, j-1]
dp[0] = i;
^/ State transition: rest of the columns
for (int j = 1; j <= m; j^+) {

int temp = dp[j];
if (s[i - 1] ^= t[j - 1]) {

^/ If two characters are equal, skip both characters
dp[j] = leftup;

} else {
^/ Minimum edit steps = minimum edit steps of insert, delete, replace + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;

}
leftup = temp; ^/ Update for next round's dp[i-1, j-1]

}
}
return dp[m];

}
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14.7 Summary

1. Key Review

• Dynamic programming decomposes problems and avoids redundant computation by storing the
solutions to subproblems, thereby significantly improving computational efficiency.

• Without considering time constraints, all dynamic programming problems can be solved using
backtracking (brute force search), but the recursion tree contains a large number of overlapping
subproblems, resulting in extremely low efficiency. By introducing a memo list, we can store
the solutions to all computed subproblems, ensuring that overlapping subproblems are only com-
puted once.

• Memoization is a top-down recursive solution, while the corresponding dynamic programming is
a bottom-up iterative solution, similar to “filling in a table”. Since the current state only depends
on certain local states, we can eliminate one dimension of the 𝑑𝑝 table to reduce space complexity.

• Subproblem decomposition is a general algorithmic approach, with different properties in divide
and conquer, dynamic programming, and backtracking.

• Dynamic programming problems have three major characteristics: overlapping subproblems, op-
timal substructure, and no aftereffects.

• If the optimal solution to the original problem can be constructed from the optimal solutions to
the subproblems, then it has optimal substructure.

• No aftereffects means that for a given state, its future development is only related to that state
and has nothing to do with all past states. Many combinatorial optimization problems do not have
no aftereffects and cannot be quickly solved using dynamic programming.

Knapsack problem

• The knapsack problem is one of the most typical dynamic programming problems, with variants
such as the 0-1 knapsack, unbounded knapsack, and multiple knapsack.

• The state definition for the 0-1 knapsack is the maximum value among the first 𝑖 items in a knap-
sack of capacity 𝑐. Based on the two decisions of not putting an item in the knapsack and putting
it in, the optimal substructure can be identified and the state transition equation constructed. In
space optimization, since each state depends on the state directly above and to the upper-left,
the list needs to be traversed in reverse order to avoid overwriting the upper-left state.

• The unbounded knapsack problem has no limit on the selection quantity of each type of item, so
the state transition for choosing to put in an item differs from the 0-1 knapsack problem. Since
the state depends on the state directly above and directly to the left, space optimization should
use forward traversal.

• The coin change problem is a variant of the unbounded knapsack problem. It changes from seek-
ing the “maximum” value to seeking the “minimum” number of coins, so max() in the state transi-
tion equation should be changed to min(). It changes from seeking “not exceeding” the knapsack
capacity to seeking “exactly” making up the target amount, so 𝑎𝑚𝑡 + 1 is used to represent the
invalid solution of “unable to make up the target amount”.

• Coin change problem II changes from seeking the “minimum number of coins” to seeking the
“number of coin combinations”, so the state transition equation correspondingly changes from
min() to a summation operator.
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Edit distance problem

• Edit distance (Levenshtein distance) is used to measure the similarity between two strings, de-
fined as the minimum number of edit steps from one string to another, with edit operations in-
cluding insert, delete, and replace.

• The state definition for the edit distance problem is theminimumnumber of edit steps required to
change the first 𝑖 characters of 𝑠 into the first 𝑗 characters of 𝑡. When 𝑠[𝑖] ≠ 𝑡[𝑗], there are three
decisions: insert, delete, replace, each with corresponding remaining subproblems. From this,
the optimal substructure can be identified and the state transition equation constructed. When
𝑠[𝑖] = 𝑡[𝑗], no edit is required for the current character.

• In edit distance, the state depends on the state directly above, directly to the left, and to the upper-
left, so after space optimization, neither forward nor reverse traversal can correctly perform state
transitions. For this reason, we use a variable to temporarily store the upper-left state, thus
transforming to a situation equivalent to the unbounded knapsack problem, allowing for forward
traversal after space optimization.
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Chapter 15. Greedy

Abstract
Sunflowers turn toward the sun, constantly pursuing the maximum potential for their own
growth.
Through rounds of simple choices, greedy strategies gradually lead to the best answer.
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15.1 Greedy Algorithm

Greedy algorithm is a common algorithm for solving optimization problems. Its basic idea is to make
the seemingly best choice at each decision stage of the problem, that is, to greedilymake locally optimal
decisions in hopes of obtaining a globally optimal solution. Greedy algorithms are simple and efficient,
and are widely applied in many practical problems.

Greedy algorithms and dynamic programming are both commonly used to solve optimization problems.
They share some similarities, such as both relying on the optimal substructure property, but they work
differently.

• Dynamic programming considers all previous decisions when making the current decision, and
uses solutions to past subproblems to construct the solution to the current subproblem.

• Greedy algorithms do not consider past decisions, but instead make greedy choices moving for-
ward, continually reducing the problem size until the problem is solved.

We will first understand how greedy algorithms work through the example problem “coin change”. This
problem has already been introduced in the “Complete Knapsack Problem” chapter, so I believe you are
not unfamiliar with it.

Question
Given 𝑛 types of coins, where the denomination of the 𝑖-th type of coin is 𝑐𝑜𝑖𝑛𝑠[𝑖 − 1], and
the target amount is 𝑎𝑚𝑡, with each type of coin available for repeated selection, what is the
minimum number of coins needed to make up the target amount? If it is impossible to make up
the target amount, return−1.

The greedy strategy adopted for this problem is shown in Figure 15-1. Given a target amount,we greed-
ily select the coin that is not greater than and closest to it, and continuously repeat this step until the
target amount is reached.

Figure 15-1 Greedy strategy for coin change
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The implementation code is as follows:

^/ ^^= File: coin_change_greedy.cpp ^^=

^* Coin change: Greedy algorithm ^/
int coinChangeGreedy(vector<int> &coins, int amt) {

^/ Assume coins list is sorted
int i = coins.size() - 1;
int count = 0;
^/ Loop to make greedy choices until no remaining amount
while (amt > 0) {

^/ Find the coin that is less than and closest to the remaining amount
while (i > 0 ^& coins[i] > amt) {

i--;
}
^/ Choose coins[i]
amt -= coins[i];
count^+;

}
^/ If no feasible solution is found, return -1
return amt ^= 0 ? count : -1;

}

You might exclaim: So clean! The greedy algorithm solves the coin change problem in about ten lines
of code.

15.1.1 Advantages and Limitations of Greedy Algorithms

Greedy algorithms are not only straightforward and simple to implement, but are also usually very
efficient. In the code above, if the smallest coin denomination is min(𝑐𝑜𝑖𝑛𝑠), the greedy choice loops
at most 𝑎𝑚𝑡/min(𝑐𝑜𝑖𝑛𝑠) times, giving a time complexity of𝑂(𝑎𝑚𝑡/min(𝑐𝑜𝑖𝑛𝑠)). This is an order of
magnitude smaller than the time complexity of the dynamic programming solution𝑂(𝑛 × 𝑎𝑚𝑡).
However, for certain coin denomination combinations, greedy algorithms cannot find the optimal
solution. Figure 15-2 provides two examples.

• Positive example 𝑐𝑜𝑖𝑛𝑠 = [1, 5, 10, 20, 50, 100]: With this coin combination, given any 𝑎𝑚𝑡, the
greedy algorithm can find the optimal solution.

• Negative example 𝑐𝑜𝑖𝑛𝑠 = [1, 20, 50]: Suppose 𝑎𝑚𝑡 = 60, the greedy algorithm can only find
the combination 50 + 1 × 10, totaling 11 coins, but dynamic programming can find the optimal
solution 20 + 20 + 20, requiring only 3 coins.

• Negative example 𝑐𝑜𝑖𝑛𝑠 = [1, 49, 50]: Suppose 𝑎𝑚𝑡 = 98, the greedy algorithm can only find
the combination 50 + 1 × 48, totaling 49 coins, but dynamic programming can find the optimal
solution 49 + 49, requiring only 2 coins.
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Figure 15-2 Examples where greedy algorithms cannot find the optimal solution

In other words, for the coin change problem, greedy algorithms cannot guarantee finding the global
optimal solution, and may even find very poor solutions. It is better suited for solving with dynamic
programming.

Generally, the applicability of greedy algorithms falls into the following two situations.

1. Can guarantee finding the optimal solution: In this situation, greedy algorithms are often the best
choice, because they tend to be more efficient than backtracking and dynamic programming.

2. Can find an approximate optimal solution: Greedy algorithms are also applicable in this situation.
For many complex problems, finding the global optimal solution is very difficult, and being able
to find a suboptimal solution with high efficiency is also very good.

15.1.2 Characteristics of Greedy Algorithms

So the question arises: what kind of problems are suitable for solving with greedy algorithms? Or in
other words, under what conditions can greedy algorithms guarantee finding the optimal solution?

Compared to dynamic programming, the conditions for using greedy algorithms are stricter, mainly
focusing on two properties of the problem.

• Greedy choice property: Only when locally optimal choices can always lead to a globally optimal
solution can greedy algorithms guarantee obtaining the optimal solution.

• Optimal substructure: The optimal solution to the original problem contains the optimal solu-
tions to subproblems.

Optimal substructure has already been introduced in the “Dynamic Programming” chapter, so we won’t
elaborate on it here. It’s worth noting that the optimal substructure of some problems is not obvious,
but they can still be solved using greedy algorithms.

We mainly explore methods for determining the greedy choice property. Although its description
seems relatively simple, in practice, for many problems, proving the greedy choice property is not
easy.

For example, in the coin change problem, although we can easily provide counterexamples to disprove
the greedy choice property, proving it is quite difficult. If asked: what conditions must a coin combi-
nation satisfy to be solvable using a greedy algorithm? We often can only rely on intuition or examples
to give an ambiguous answer, and find it difficult to provide a rigorous mathematical proof.
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Quote
There is a paper that presents an algorithmwith𝑂(𝑛3) time complexity for determiningwhether
a coin combination can use a greedy algorithm to find the optimal solution for any amount.
Pearson, D. A polynomial-time algorithm for the change-making problem[J]. Operations Re-
search Letters, 2005, 33(3): 231-234.

15.1.3 Steps for Solving Problems with Greedy Algorithms

The problem-solving process for greedy problems can generally be divided into the following three
steps.

1. Problem analysis: Sort out and understand the problem characteristics, including state defini-
tion, optimization objectives, and constraints, etc. This step is also involved in backtracking and
dynamic programming.

2. Determine the greedy strategy: Determine how to make greedy choices at each step. This strat-
egy should be able to reduce the problem size at each step, ultimately solving the entire problem.

3. Correctness proof: It is usually necessary to prove that the problem has both greedy choice prop-
erty and optimal substructure. This step may require mathematical proofs, such as mathematical
induction or proof by contradiction.

Determining the greedy strategy is the core step in solving the problem, but it may not be easy to
implement, mainly for the following reasons.

• Greedy strategies differ greatly between different problems. For many problems, the greedy
strategy is relatively straightforward, and we can derive it through some general thinking and
attempts. However, for some complex problems, the greedy strategy may be very elusive, which
really tests one’s problem-solving experience and algorithmic ability.

• Some greedy strategies are highly misleading. When we confidently design a greedy strategy,
write the solution code and submit it for testing, we may find that some test cases cannot pass.
This is because the designed greedy strategy is only “partially correct”, as exemplified by the coin
change problem discussed above.

To ensure correctness, we should rigorously mathematically prove the greedy strategy, usually using
proof by contradiction or mathematical induction.

However, correctness proofs may also not be easy. If we have no clue, we usually choose to debug the
code based on test cases, step by step modifying and verifying the greedy strategy.

15.1.4 Typical Problems Solved by Greedy Algorithms

Greedy algorithms are often applied to optimization problems that satisfy greedy choice property and
optimal substructure. Below are some typical greedy algorithm problems.

• Coin change problem: With certain coin combinations, greedy algorithms can always obtain the
optimal solution.
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• Interval scheduling problem: Suppose you have some tasks, each taking place during a period of
time, and your goal is to complete as many tasks as possible. If you always choose the task that
ends earliest, then the greedy algorithm can obtain the optimal solution.

• Fractional knapsack problem: Given a set of items and a carrying capacity, your goal is to select a
set of items such that the total weight does not exceed the carrying capacity and the total value is
maximized. If you always choose the item with the highest value-to-weight ratio (value / weight),
then the greedy algorithm can obtain the optimal solution in some cases.

• Stock trading problem: Given a set of historical stock prices, you can make multiple trades, but
if you already hold stocks, you cannot buy again before selling, and the goal is to obtain the maxi-
mum profit.

• Huffman coding: Huffman coding is a greedy algorithm used for lossless data compression. By
constructing a Huffman tree and always merging the two nodes with the lowest frequency, the
resulting Huffman tree has the minimum weighted path length (encoding length).

• Dijkstra’s algorithm: It is a greedy algorithm for solving the shortest path problem from a given
source vertex to all other vertices.

15.2 Fractional Knapsack Problem

Question
Given 𝑛 items, where the weight of the 𝑖-th item is 𝑤𝑔𝑡[𝑖 − 1] and its value is 𝑣𝑎𝑙[𝑖 − 1], and a
knapsack with capacity 𝑐𝑎𝑝. Each item can be selected only once, but a portion of an item can
be selected, with the value calculated based on the proportion of weight selected, what is the
maximum value of items in the knapsack under the limited capacity? An example is shown in
Figure 15-3.

Figure 15-3 Example data for the fractional knapsack problem
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The fractional knapsack problem is very similar overall to the 0-1 knapsack problem, with states includ-
ing the current item 𝑖 and capacity 𝑐, and the goal being to maximize value under the limited knapsack
capacity.

The difference is that this problem allows selecting only a portion of an item. As shown in Figure 15-4,
we can arbitrarily split items and calculate the corresponding value based on theweight proportion.

1. For item 𝑖, its value per unit weight is 𝑣𝑎𝑙[𝑖 − 1]/𝑤𝑔𝑡[𝑖 − 1], referred to as unit value.
2. Suppose we put a portion of item 𝑖 with weight 𝑤 into the knapsack, then the value added to the
knapsack is 𝑤 × 𝑣𝑎𝑙[𝑖 − 1]/𝑤𝑔𝑡[𝑖 − 1].

Figure 15-4 Value of items per unit weight

1. Greedy Strategy Determination

Maximizing the total value of items in the knapsack is essentially maximizing the value per unit weight
of items. From this, we can derive the greedy strategy shown in Figure 15-5.

1. Sort items by unit value from high to low.
2. Iterate through all items, greedily selecting the item with the highest unit value in each round.
3. If the remaining knapsack capacity is insufficient, use a portion of the current item to fill the
knapsack.

Figure 15-5 Greedy strategy for the fractional knapsack problem
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2. Code Implementation

We created an Item class to facilitate sorting items by unit value. We loop to make greedy selections,
breaking when the knapsack is full and returning the solution:

^/ ^^= File: fractional_knapsack.cpp ^^=

^* Item ^/
class Item {

public:
int w; ^/ Item weight
int v; ^/ Item value

Item(int w, int v) : w(w), v(v) {
}

};

^* Fractional knapsack: Greedy algorithm ^/
double fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {

^/ Create item list with two attributes: weight, value
vector<Item> items;
for (int i = 0; i < wgt.size(); i^+) {

items.push_back(Item(wgt[i], val[i]));
}
^/ Sort by unit value item.v / item.w from high to low
sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w >
(double)b.v / b.w; });↪
^/ Loop for greedy selection
double res = 0;
for (auto &item : items) {

if (item.w <= cap) {
^/ If remaining capacity is sufficient, put the entire current item into the knapsack
res += item.v;
cap -= item.w;

} else {
^/ If remaining capacity is insufficient, put part of the current item into the

knapsack↪
res += (double)item.v / item.w * cap;
^/ No remaining capacity, so break out of the loop
break;

}
}
return res;

}

The time complexity of built-in sorting algorithms is usually 𝑂(log𝑛), and the space complexity is
usually𝑂(log𝑛) or𝑂(𝑛), depending on the specific implementation of the programming language.
Apart from sorting, in the worst case the entire item list needs to be traversed, therefore the time
complexity is𝑂(𝑛), where 𝑛 is the number of items.
Since an Item object list is initialized, the space complexity is𝑂(𝑛).
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3. Correctness Proof

Using proof by contradiction. Suppose item 𝑥 has the highest unit value, and some algorithm yields a
maximum value of res, but this solution does not include item 𝑥.
Now remove a unit weight of any item from the knapsack and replace it with a unit weight of item
𝑥. Since item 𝑥 has the highest unit value, the total value after replacement will definitely be greater
than res. This contradicts the assumption that res is the optimal solution, proving that the optimal
solution must include item 𝑥.
For other items in this solution, we can also construct the above contradiction. In summary, itemswith
greater unit value are always better choices, which proves that the greedy strategy is effective.

As shown in Figure 15-6, if we view item weight and item unit value as the horizontal and vertical axes
of a two-dimensional chart respectively, then the fractional knapsack problem can be transformed into
“finding the maximum area enclosed within a limited horizontal axis range”. This analogy can help us
understand the effectiveness of the greedy strategy from a geometric perspective.

Figure 15-6 Geometric representation of the fractional knapsack problem

15.3 Max Capacity Problem

Question
Input an array ℎ𝑡, where each element represents the height of a vertical partition. Any two
partitions in the array, along with the space between them, can form a container.
The capacity of the container equals the product of height and width (area), where the height
is determined by the shorter partition, and the width is the difference in array indices between
the two partitions.
Please select two partitions in the array such that the capacity of the formed container is maxi-
mized, and return the maximum capacity. An example is shown in Figure 15-7.
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Figure 15-7 Example data for the max capacity problem

The container is formed by any two partitions, therefore the state of this problem is the indices of two
partitions, denoted as [𝑖, 𝑗].
According to the problemdescription, capacity equals heightmultiplied bywidth, where height is deter-
mined by the shorter partition, and width is the difference in array indices between the two partitions.
Let the capacity be 𝑐𝑎𝑝[𝑖, 𝑗], then the calculation formula is:

𝑐𝑎𝑝[𝑖, 𝑗] = min(ℎ𝑡[𝑖], ℎ𝑡[𝑗]) × (𝑗 − 𝑖)

Let the array length be 𝑛, then the number of combinations of two partitions (total number of states) is
𝐶2

𝑛 = 𝑛(𝑛−1)
2 . Most directly, we can exhaustively enumerate all states to find the maximum capacity,

with time complexity𝑂(𝑛2).

1. Greedy Strategy Determination

This problem has a more efficient solution. As shown in Figure 15-8, select a state [𝑖, 𝑗] where index
𝑖 < 𝑗 and height ℎ𝑡[𝑖] < ℎ𝑡[𝑗], meaning 𝑖 is the short partition and 𝑗 is the long partition.
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Figure 15-8 Initial state

As shown in Figure 15-9, if we nowmove the long partition 𝑗 closer to the short partition 𝑖, the capacity
will definitely decrease.

This is because after moving the long partition 𝑗, the width 𝑗 − 𝑖 definitely decreases; and since height
is determined by the short partition, the height can only remain unchanged (𝑖 is still the short partition)
or decrease (the moved 𝑗 becomes the short partition).

Figure 15-9 State after moving the long partition inward

Conversely, we can only possibly increase capacity by contracting the short partition 𝑖 inward. Be-
cause although width will definitely decrease, height may increase (the moved short partition 𝑖 may
become taller). For example, in Figure 15-10, the area increases after moving the short partition.
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Figure 15-10 State after moving the short partition inward

From this we can derive the greedy strategy for this problem: initialize two pointers at both ends of the
container, and in each round contract the pointer corresponding to the short partition inward, until
the two pointers meet.

Figure 15-11 shows the execution process of the greedy strategy.

1. In the initial state, pointers 𝑖 and 𝑗 are at both ends of the array.
2. Calculate the capacity of the current state 𝑐𝑎𝑝[𝑖, 𝑗], and update the maximum capacity.
3. Compare the heights of partition 𝑖 and partition 𝑗, and move the short partition inward by one
position.

4. Loop through steps 2. and 3. until 𝑖 and 𝑗 meet.
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Figure 15-11 Greedy process for the max capacity problem

2. Code Implementation

The code loops at most 𝑛 rounds, therefore the time complexity is𝑂(𝑛).
Variables 𝑖, 𝑗, and 𝑟𝑒𝑠 use a constant amount of extra space, therefore the space complexity is𝑂(1).
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^/ ^^= File: max_capacity.cpp ^^=

^* Max capacity: Greedy algorithm ^/
int maxCapacity(vector<int> &ht) {

^/ Initialize i, j to be at both ends of the array
int i = 0, j = ht.size() - 1;
^/ Initial max capacity is 0
int res = 0;
^/ Loop for greedy selection until the two boards meet
while (i < j) {

^/ Update max capacity
int cap = min(ht[i], ht[j]) * (j - i);
res = max(res, cap);
^/ Move the shorter board inward
if (ht[i] < ht[j]) {

i^+;
} else {

j--;
}

}
return res;

}

3. Correctness Proof

The reason greedy is faster than exhaustive enumeration is that each round of greedy selection “skips”
some states.

For example, in state 𝑐𝑎𝑝[𝑖, 𝑗] where 𝑖 is the short partition and 𝑗 is the long partition, if we greedily
move the short partition 𝑖 inward by one position, the states shown in Figure 15-12 will be “skipped”.
This means that the capacities of these states cannot be verified later.

𝑐𝑎𝑝[𝑖, 𝑖 + 1], 𝑐𝑎𝑝[𝑖, 𝑖 + 2],… , 𝑐𝑎𝑝[𝑖, 𝑗 − 2], 𝑐𝑎𝑝[𝑖, 𝑗 − 1]
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Figure 15-12 States skipped by moving the short partition

Observing carefully, these skipped states are actually all the states obtained by moving the long par-
tition 𝑗 inward. We have already proven that moving the long partition inward will definitely decrease
capacity. That is, the skipped states cannot possibly be the optimal solution, skipping them will not
cause us to miss the optimal solution.

The above analysis shows that the operation of moving the short partition is “safe”, and the greedy
strategy is effective.

15.4 Max Product Cutting Problem

Question
Given a positive integer 𝑛, split it into the sum of at least two positive integers, and find the
maximum product of all integers after splitting, as shown in Figure 15-13.

Figure 15-13 Problem definition of max product cutting

Suppose we split 𝑛 into𝑚 integer factors, where the 𝑖-th factor is denoted as 𝑛𝑖, that is

𝑛 =
𝑚

∑
𝑖=1

𝑛𝑖

The goal of this problem is to find the maximum product of all integer factors, namely

max(
𝑚
∏
𝑖=1

𝑛𝑖)

We need to think about: how large should the splitting count𝑚 be, and what should each 𝑛𝑖 be?
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1. Greedy Strategy Determination

Based on experience, the product of two integers is often greater than their sum. Suppose we split out
a factor of 2 from 𝑛, then their product is 2(𝑛 − 2). We compare this product with 𝑛:

2(𝑛 − 2) ≥ 𝑛
2𝑛 − 𝑛 − 4 ≥ 0

𝑛 ≥ 4

As shown in Figure 15-14, when 𝑛 ≥ 4, splitting out a 2 will increase the product, which indicates that
integers greater than or equal to 4 should all be split.
Greedy strategy one: If the splitting scheme includes factors ≥ 4, then they should continue to be
split. The final splitting scheme should only contain factors 1, 2, and 3.

Figure 15-14 Splitting causes product to increase

Next, consider which factor is optimal. Among the three factors 1, 2, and 3, clearly 1 is the worst,
because 1 × (𝑛 − 1) < 𝑛 always holds, meaning splitting out 1 will actually decrease the product.
As shown in Figure 15-15, when 𝑛 = 6, we have 3 × 3 > 2 × 2 × 2. This means that splitting out 3 is
better than splitting out 2.
Greedy strategy two: In the splitting scheme, there should be at most two 2s. Because three 2s can
always be replaced by two 3s to obtain a larger product.
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Figure 15-15 Optimal splitting factor

In summary, the following greedy strategies can be derived.

1. Input integer 𝑛, continuously split out factor 3 until the remainder is 0, 1, or 2.
2. When the remainder is 0, it means 𝑛 is a multiple of 3, so no further action is needed.
3. When the remainder is 2, do not continue splitting, keep it.
4. When the remainder is 1, since 2 × 2 > 1 × 3, the last 3 should be replaced with 2.

2. Code Implementation

As shown in Figure 15-16, we don’t need to use loops to split the integer, but can use integer division to
get the count of 3s as 𝑎, and modulo operation to get the remainder as 𝑏, at which point we have:

𝑛 = 3𝑎 + 𝑏

Please note that for the edge case of 𝑛 ≤ 3, a 1must be split out, with product 1 × (𝑛 − 1).

^/ ^^= File: max_product_cutting.cpp ^^=

^* Max product cutting: Greedy algorithm ^/
int maxProductCutting(int n) {

^/ When n <= 3, must cut out a 1
if (n <= 3) {

return 1 * (n - 1);
}
^/ Greedily cut out 3, a is the number of 3s, b is the remainder
int a = n / 3;
int b = n % 3;
if (b ^= 1) {

^/ When the remainder is 1, convert a pair of 1 * 3 to 2 * 2
return (int)pow(3, a - 1) * 2 * 2;

}
if (b ^= 2) {
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^/ When the remainder is 2, do nothing
return (int)pow(3, a) * 2;

}
^/ When the remainder is 0, do nothing
return (int)pow(3, a);

}

Figure 15-16 Calculation method for max product cutting

The time complexity depends on the implementation of the exponentiation operation in the pro-
gramming language. Taking Python as an example, there are three commonly used power calculation
functions.

• Both the operator ** and the function pow() have time complexity𝑂(log  𝑎).
• The function math.pow() internally calls the C library’s pow() function, which performs floating-
point exponentiation, with time complexity𝑂(1).

Variables 𝑎 and 𝑏 use a constant amount of extra space, therefore the space complexity is𝑂(1).

3. Correctness Proof

Using proof by contradiction, only analyzing the case where 𝑛 ≥ 4.
1. All factors ≤ 3: Suppose the optimal splitting scheme includes a factor 𝑥 ≥ 4, then it can defi-
nitely continue to be split into 2(𝑥−2) to obtain a larger (or equal) product. This contradicts the
assumption.

2. The splitting scheme does not contain 1: Suppose the optimal splitting scheme includes a fac-
tor of 1, then it can definitely be merged into another factor to obtain a larger product. This
contradicts the assumption.

3. The splitting scheme contains at most two 2s: Suppose the optimal splitting scheme includes
three 2s, then they can definitely be replaced by two 3s for a larger product. This contradicts the
assumption.
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15.5 Summary

1. Key Review

• Greedy algorithms are typically used to solve optimization problems. The principle is to make
locally optimal decisions at each decision stage in hopes of obtaining a globally optimal solution.

• Greedy algorithms iteratively make one greedy choice after another, transforming the problem
into a smaller subproblem in each round, until the problem is solved.

• Greedy algorithms are not only simple to implement, but also have high problem-solving effi-
ciency. Compared to dynamic programming, greedy algorithms typically have lower time com-
plexity.

• In the coin change problem, for certain coin combinations, greedy algorithms can guarantee find-
ing the optimal solution; for other coin combinations, however, greedy algorithms may find very
poor solutions.

• Problems suitable for solving with greedy algorithms have two major properties: greedy choice
property and optimal substructure. The greedy choice property represents the effectiveness of
the greedy strategy.

• For some complex problems, proving the greedy choice property is not simple. Relatively speak-
ing, disproving it is easier, such as in the coin change problem.

• Solving greedy problemsmainly consists of three steps: problem analysis, determining the greedy
strategy, and correctness proof. Among these, determining the greedy strategy is the core step,
and correctness proof is often the difficult point.

• The fractional knapsack problem, based on the 0-1 knapsack problem, allows selecting a portion
of items, and therefore can be solved using greedy algorithms. The correctness of the greedy
strategy can be proven using proof by contradiction.

• The max capacity problem can be solved using exhaustive enumeration with time complexity
𝑂(𝑛2). By designing a greedy strategy to move the short partition inward in each round, the time
complexity can be optimized to𝑂(𝑛).

• In the max product cutting problem, we successively derive two greedy strategies: integers ≥ 4
should all continue to be split, and the optimal splitting factor is 3. The code includes exponenti-
ation operations, and the time complexity depends on the implementation method of exponenti-
ation, typically being𝑂(1) or𝑂(log𝑛).
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16.1 Programming Environment Installation

16.1.1 Installing Ide

We recommend using the open-source and lightweight VS Code as the local integrated development
environment (IDE). Visit the VS Code official website, and download and install the appropriate version
of VS Code according to your operating system.

Figure 16-1 Download VS Code from the Official Website

VS Code has a powerful ecosystem of extensions that supports running and debugging most program-
ming languages. For example, after installing the “Python Extension Pack” extension, you can debug
Python code. The installation steps are shown in the following figure.

https://code.visualstudio.com/
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Figure 16-2 Install VS Code Extensions

16.1.2 Installing Language Environments

1. Python Environment

1. Download and install Miniconda3, which requires Python 3.10 or newer.
2. Search for python in the VS Code extension marketplace and install the Python Extension Pack.
3. (Optional) Enter pip install black on the command line to install the code formatter.

2. C/c++ Environment

1. Windows systems need to install MinGW (configuration tutorial); macOS comes with Clang built-
in and does not require installation.

2. Search for c^+ in the VS Code extension marketplace and install the C/C++ Extension Pack.
3. (Optional) Open the Settings page, search for the Clang_format_fallback Style code formatting
option, and set it to { BasedOnStyle: Microsoft, BreakBeforeBraces: Attach }.

3. Java Environment

1. Download and install OpenJDK (version must be > JDK 9).
2. Search for java in the VS Code extension marketplace and install the Extension Pack for Java.

https://docs.conda.io/en/latest/miniconda.html
https://sourceforge.net/projects/mingw-w64/files/
https://blog.csdn.net/qq_33698226/article/details/129031241
https://jdk.java.net/18/
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4. C# Environment

1. Download and install .Net 8.0.
2. Search for C# Dev Kit in the VSCode extensionmarketplace and install C#DevKit (configuration
tutorial).

3. You can also use Visual Studio (installation tutorial).

5. Go Environment

1. Download and install Go.
2. Search for go in the VS Code extension marketplace and install Go.
3. Press Ctrl + Shift + P to open the commandpalette, type go, select Go: Install/Update Tools,
check all options and install.

6. Swift Environment

1. Download and install Swift.
2. Search for swift in the VS Code extension marketplace and install Swift for Visual Studio Code.

7. Javascript Environment

1. Download and install Node.js.
2. (Optional) Search for Prettier in the VS Code extension marketplace and install the code format-
ter.

8. Typescript Environment

1. Follow the same installation steps as the JavaScript environment.
2. Install TypeScript Execute (tsx).
3. Search for typescript in the VS Code extension marketplace and install Pretty TypeScript Errors.

9. Dart Environment

1. Download and install Dart.
2. Search for dart in the VS Code extension marketplace and install Dart.

10. Rust Environment

1. Download and install Rust.
2. Search for rust in the VS Code extension marketplace and install rust-analyzer.

https://dotnet.microsoft.com/en-us/download
https://code.visualstudio.com/docs/csharp/get-started
https://code.visualstudio.com/docs/csharp/get-started
https://learn.microsoft.com/zh-cn/visualstudio/install/install-visual-studio?view=vs-2022
https://go.dev/dl/
https://www.swift.org/download/
https://marketplace.visualstudio.com/items?itemName=sswg.swift-lang
https://nodejs.org/en/
https://github.com/privatenumber/tsx?tab=readme-ov-file#global-installation
https://marketplace.visualstudio.com/items?itemName=yoavbls.pretty-ts-errors
https://dart.dev/get-dart
https://marketplace.visualstudio.com/items?itemName=Dart-Code.dart-code
https://www.rust-lang.org/tools/install
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer
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16.2 Contributing Together

Due to limited capacity, there may be inevitable omissions and errors in this book. We appreciate your
understanding and are grateful for your help in correcting them. If you discover typos, broken links,
missing content, ambiguous wording, unclear explanations, or structural issues, please help us make
corrections to provide readers with higher-quality learning resources.

The GitHub IDs of all contributors will be displayed on the homepage of the book repository, the web
version, and the PDF version to acknowledge their selfless contributions to the open source commu-
nity.

The Charm of Open Source
The interval between two printings of a physical book is often quite long, making content updates
very inconvenient.
In this open source book, the time for content updates has been shortened to just days or even
hours.

1. Minor Content Adjustments

As shown in Figure 16-3, there is an “edit icon” in the top-right corner of each page. You can modify
text or code by following these steps.

1. Click the “edit icon”. If you encounter a prompt asking you to “Fork this repository”, please approve
the operation.

2. Modify the content of the Markdown source file, verify the correctness of the content, and main-
tain consistent formatting as much as possible.

3. Fill in a description of your changes at the bottom of the page, then click the “Propose file change”
button. After the page transitions, click the “Create pull request” button to submit your pull re-
quest.

https://github.com/krahets/hello-algo/graphs/contributors
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Figure 16-3 Page edit button

Images cannot be directly modified. Please describe the issue by creating a new Issue or leaving a
comment. We will promptly redraw and replace the images.

2. Content Creation

If you are interested in contributing to this open source project, including translating code into other
programming languages or expanding article content, youwill need to follow the Pull Request workflow
below.

1. Log in to GitHub and Fork the book’s code repository to your personal account.
2. Enter your forked repository webpage and use the git clone command to clone the repository
to your local machine.

3. Create content locally and conduct comprehensive tests to verify code correctness.
4. Commit your local changes and push them to the remote repository.
5. Refresh the repository webpage and click the “Create pull request” button to submit your pull
request.

3. Docker Deployment

From the root directory of hello-algo, run the following Docker script to access the project at
http:^/localhost:8000:

docker-compose up -d

Use the following command to remove the deployment:

https://github.com/krahets/hello-algo/issues
https://github.com/krahets/hello-algo
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docker-compose down

16.3 Terminology Table

The following table lists important terms that appear in this book. It is worth noting the following
points:

• We recommend remembering the English names of terms to help with reading English literature.
• Some terms have different names in Simplified Chinese and Traditional Chinese.

Table 16-1 Important Terms in Data Structures and Algorithms

English Simplified Chinese Traditional Chinese

algorithm 算法 演算法
data structure 数据结构 資料結構
code 代码 程式碼
file 文件 檔案
function 函数 函式
method 方法 方法
variable 变量 變數
asymptotic complexity analysis 渐近复杂度分析 漸近複雜度分析
time complexity 时间复杂度 時間複雜度
space complexity 空间复杂度 空間複雜度
loop 循环 迴圈
iteration 迭代 迭代
recursion 递归 遞迴
tail recursion 尾递归 尾遞迴
recursion tree 递归树 遞迴樹
big-𝑂 notation 大𝑂记号 大𝑂記號
asymptotic upper bound 渐近上界 漸近上界
sign-magnitude 原码 原碼
1’s complement 反码 一補數
2’s complement 补码 二補數
array 数组 陣列
index 索引 索引
linked list 链表 鏈結串列
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English Simplified Chinese Traditional Chinese

linked list node, list node 链表节点 鏈結串列節點
head node 头节点 頭節點
tail node 尾节点 尾節點
list 列表 串列
dynamic array 动态数组 動態陣列
hard disk 硬盘 硬碟
random-access memory (RAM) 内存 記憶體
cache memory 缓存 快取
cache miss 缓存未命中 快取未命中
cache hit rate 缓存命中率 快取命中率
stack 栈 堆疊
top of the stack 栈顶 堆疊頂
bottom of the stack 栈底 堆疊底
queue 队列 佇列
double-ended queue 双向队列 雙向佇列
front of the queue 队首 佇列首
rear of the queue 队尾 佇列尾
hash table 哈希表 雜湊表
hash set 哈希集合 雜湊集合
bucket 桶 桶
hash function 哈希函数 雜湊函式
hash collision 哈希冲突 雜湊衝突
load factor 负载因子 負載因子
separate chaining 链式地址 鏈結位址
open addressing 开放寻址 開放定址
linear probing 线性探测 線性探查
lazy deletion 懒删除 懶刪除
binary tree 二叉树 二元樹
tree node 树节点 樹節點
left-child node 左子节点 左子節點
right-child node 右子节点 右子節點
parent node 父节点 父節點
left subtree 左子树 左子樹
right subtree 右子树 右子樹
root node 根节点 根節點
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leaf node 叶节点 葉節點
edge 边 邊
level 层 層
degree 度 度
height 高度 高度
depth 深度 深度
perfect binary tree 完美二叉树 完美二元樹
complete binary tree 完全二叉树 完全二元樹
full binary tree 完满二叉树 完滿二元樹
balanced binary tree 平衡二叉树 平衡二元樹
binary search tree 二叉搜索树 二元搜尋樹
AVL tree AVL树 AVL樹
red-black tree 红黑树 紅黑樹
level-order traversal 层序遍历 層序走訪
breadth-first traversal 广度优先遍历 廣度優先走訪
depth-first traversal 深度优先遍历 深度優先走訪
binary search tree 二叉搜索树 二元搜尋樹
balanced binary search tree 平衡二叉搜索树 平衡二元搜尋樹
balance factor 平衡因子 平衡因子
heap 堆 堆積
max heap 大顶堆 大頂堆積
min heap 小顶堆 小頂堆積
priority queue 优先队列 優先佇列
heapify 堆化 堆積化
top-𝑘 problem Top-𝑘问题 Top-𝑘問題
graph 图 圖
vertex 顶点 頂點
undirected graph 无向图 無向圖
directed graph 有向图 有向圖
connected graph 连通图 連通圖
disconnected graph 非连通图 非連通圖
weighted graph 有权图 有權圖
adjacency 邻接 鄰接
path 路径 路徑
in-degree 入度 入度
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out-degree 出度 出度
adjacency matrix 邻接矩阵 鄰接矩陣
adjacency list 邻接表 鄰接表
breadth-first search 广度优先搜索 廣度優先搜尋
depth-first search 深度优先搜索 深度優先搜尋
binary search 二分查找 二分搜尋
searching algorithm 搜索算法 搜尋演算法
sorting algorithm 排序算法 排序演算法
selection sort 选择排序 選擇排序
bubble sort 冒泡排序 泡沫排序
insertion sort 插入排序 插入排序
quick sort 快速排序 快速排序
merge sort 归并排序 合併排序
heap sort 堆排序 堆積排序
bucket sort 桶排序 桶排序
counting sort 计数排序 計數排序
radix sort 基数排序 基數排序
divide and conquer 分治 分治
hanota problem 汉诺塔问题 河內塔問題
backtracking algorithm 回溯算法 回溯演算法
constraint 约束 約束
solution 解 解
state 状态 狀態
pruning 剪枝 剪枝
permutations problem 全排列问题 全排列問題
subset-sum problem 子集和问题 子集合問題
𝑛-queens problem 𝑛皇后问题 𝑛皇后問題
dynamic programming 动态规划 動態規劃
initial state 初始状态 初始狀態
state-transition equation 状态转移方程 狀態轉移方程
knapsack problem 背包问题 背包問題
edit distance problem 编辑距离问题 編輯距離問題
greedy algorithm 贪心算法 貪婪演算法
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“Among the universe's 200 billion galaxies, encountering you, a shining star, is this book's great fortune.”
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